public static void PrintTrainingProgress(Trainer trainer, int minibatchIdx, int outputFrequencyInMinibatches)
 {
     if ((minibatchIdx % outputFrequencyInMinibatches) == 0 && trainer.PreviousMinibatchSampleCount() != 0)
     {
         float trainLossValue  = (float)trainer.PreviousMinibatchLossAverage();
         float evaluationValue = (float)trainer.PreviousMinibatchEvaluationAverage();
         Console.WriteLine($"Minibatch: {minibatchIdx} CrossEntropyLoss = {trainLossValue}, EvaluationCriterion = {evaluationValue}");
     }
 }
예제 #2
0
 public void PrintTrainingProgress(Trainer trainer, int minibatchIdx)
 {
     if (trainer.PreviousMinibatchSampleCount() != 0)
     {
         float trainLossValue  = (float)trainer.PreviousMinibatchLossAverage();
         float evaluationValue = (float)trainer.PreviousMinibatchEvaluationAverage();
         Debug.WriteLine($"Minibatch: {minibatchIdx} CrossEntropyLoss = {trainLossValue}, EvaluationCriterion = {evaluationValue}");
     }
 }
예제 #3
0
 public void PrintTrainingProgress(Trainer trainer, int minibatchIdx)
 {
     if (trainer.PreviousMinibatchSampleCount() != 0)
     {
         float trainLossValue  = (float)trainer.PreviousMinibatchLossAverage();
         float evaluationValue = (float)trainer.PreviousMinibatchEvaluationAverage();
         Debug.WriteLine($"{minibatchIdx};{trainLossValue};{evaluationValue};");
     }
 }