public static void PrintTrainingProgress(Trainer trainer, int minibatchIdx, int outputFrequencyInMinibatches) { if ((minibatchIdx % outputFrequencyInMinibatches) == 0 && trainer.PreviousMinibatchSampleCount() != 0) { float trainLossValue = (float)trainer.PreviousMinibatchLossAverage(); float evaluationValue = (float)trainer.PreviousMinibatchEvaluationAverage(); Console.WriteLine($"Minibatch: {minibatchIdx} CrossEntropyLoss = {trainLossValue}, EvaluationCriterion = {evaluationValue}"); } }
public void PrintTrainingProgress(Trainer trainer, int minibatchIdx) { if (trainer.PreviousMinibatchSampleCount() != 0) { float trainLossValue = (float)trainer.PreviousMinibatchLossAverage(); float evaluationValue = (float)trainer.PreviousMinibatchEvaluationAverage(); Debug.WriteLine($"Minibatch: {minibatchIdx} CrossEntropyLoss = {trainLossValue}, EvaluationCriterion = {evaluationValue}"); } }
public void PrintTrainingProgress(Trainer trainer, int minibatchIdx) { if (trainer.PreviousMinibatchSampleCount() != 0) { float trainLossValue = (float)trainer.PreviousMinibatchLossAverage(); float evaluationValue = (float)trainer.PreviousMinibatchEvaluationAverage(); Debug.WriteLine($"{minibatchIdx};{trainLossValue};{evaluationValue};"); } }