// ------------------------ // Constructor // ------------------------ // QR Decomposition, computed by Householder reflections. // @param A Rectangular matrix public QRDecomposition (Matrix A) { // Initialize. QR = A.GetArrayCopy(); m = A.GetRowDimension(); n = A.GetColumnDimension(); Rdiag = new double[n]; // Main loop. for (int k = 0; k < n; k++) { // Compute 2-norm of k-th column without under/overflow. double nrm = 0; for (int i = k; i < m; i++) { nrm = MathUtils.Hypot(nrm,QR[i][k]); } if (nrm != 0.0) { // Form k-th Householder vector. if (QR[k][k] < 0) { nrm = -nrm; } for (int i = k; i < m; i++) { QR[i][k] /= nrm; } QR[k][k] += 1.0; // Apply transformation to remaining columns. for (int j = k+1; j < n; j++) { double s = 0.0; for (int i = k; i < m; i++) { s += QR[i][k]*QR[i][j]; } s = -s/QR[k][k]; for (int i = k; i < m; i++) { QR[i][j] += s*QR[i][k]; } } } Rdiag[k] = -nrm; } }
// ------------------------ // Constructor // ------------------------ // LU Decomposition // @param A Rectangular matrix public LUDecomposition (Matrix A) { // Use a "left-looking", dot-product, Crout/Doolittle algorithm. LU = A.GetArrayCopy(); m = A.GetRowDimension(); n = A.GetColumnDimension(); piv = new int[m]; for (int i = 0; i < m; i++) { piv[i] = i; } pivsign = 1; double[] LUrowi; double[] LUcolj = new double[m]; // Outer loop. for (int j = 0; j < n; j++) { // Make a copy of the j-th column to localize references. for (int i = 0; i < m; i++) { LUcolj[i] = LU[i][j]; } // Apply previous transformations. for (int i = 0; i < m; i++) { LUrowi = LU[i]; // Most of the time is spent in the following dot product. int kmax = Math.Min(i,j); double s = 0.0; for (int k = 0; k < kmax; k++) { s += LUrowi[k]*LUcolj[k]; } LUrowi[j] = LUcolj[i] -= s; } // Find pivot and exchange if necessary. int p = j; for (int i = j+1; i < m; i++) { if (Math.Abs(LUcolj[i]) > Math.Abs(LUcolj[p])) { p = i; } } if (p != j) { for (int k = 0; k < n; k++) { double t = LU[p][k]; LU[p][k] = LU[j][k]; LU[j][k] = t; } int k1 = piv[p]; piv[p] = piv[j]; piv[j] = k1; pivsign = -pivsign; } // Compute multipliers. if (j < m & LU[j][j] != 0.0) { for (int i = j+1; i < m; i++) { LU[i][j] /= LU[j][j]; } } } }
/// <summary> /// Solve A*X = B /// </summary> /// <param name="B">A Matrix with as many rows as A and any number of columns.</param> /// <returns>X so that L*L'*X = B</returns> public Matrix Solve (Matrix B) { if (B.GetRowDimension() != n) { throw new ArgumentException("Matrix row dimensions must agree."); } if (!isspd) { throw new Exception("Matrix is not symmetric positive definite."); } // Copy right hand side. double[][] X = B.GetArrayCopy(); int nx = B.GetColumnDimension(); // Solve L*Y = B; for (int k = 0; k < n; k++) { for (int j = 0; j < nx; j++) { for (int i = 0; i < k ; i++) { X[k][j] -= X[i][j]*L[k][i]; } X[k][j] /= L[k][k]; } } // Solve L'*X = Y; for (int k = n-1; k >= 0; k--) { for (int j = 0; j < nx; j++) { for (int i = k+1; i < n ; i++) { X[k][j] -= X[i][j]*L[i][k]; } X[k][j] /= L[k][k]; } } return new Matrix(X,n,nx); }
// Least squares solution of A*X = B // @param B A Matrix with as many rows as A and any number of columns. // @return X that minimizes the two norm of Q*R*X-B. // @exception ArgumentException Matrix row dimensions must agree. // @exception Exception Matrix is rank deficient. public Matrix Solve (Matrix B) { if (B.GetRowDimension() != m) { throw new ArgumentException("Matrix row dimensions must agree."); } if (!this.IsFullRank()) { throw new Exception("Matrix is rank deficient."); } // Copy right hand side int nx = B.GetColumnDimension(); double[][] X = B.GetArrayCopy(); // Compute Y = transpose(Q)*B for (int k = 0; k < n; k++) { for (int j = 0; j < nx; j++) { double s = 0.0; for (int i = k; i < m; i++) { s += QR[i][k]*X[i][j]; } s = -s/QR[k][k]; for (int i = k; i < m; i++) { X[i][j] += s*QR[i][k]; } } } // Solve R*X = Y; for (int k = n-1; k >= 0; k--) { for (int j = 0; j < nx; j++) { X[k][j] /= Rdiag[k]; } for (int i = 0; i < k; i++) { for (int j = 0; j < nx; j++) { X[i][j] -= X[k][j]*QR[i][k]; } } } return (new Matrix(X,n,nx).GetMatrix(0,n-1,0,nx-1)); }
// ------------------------ // Constructor // ------------------------ // Construct the singular value decomposition // @param Arg Rectangular matrix public SingularValueDecomposition (Matrix Arg) { // Derived from LINPACK code. // Initialize. double[][] A = Arg.GetArrayCopy(); m = Arg.GetRowDimension(); n = Arg.GetColumnDimension(); // Apparently the failing cases are only a proper subset of (m<n), // so let's not throw error. Correct fix to come later? // if (m<n) { // throw new ArgumentException("Jama SVD only works for m >= n"); } // int nu = Math.Min(m,n); s = new double [Math.Min(m+1,n)]; U = new double[m][]; for (int i=0;i<m;i++) U[i] = new double[nu]; V = new double [n][]; for (int i=0;i<n;i++) V[i] = new double[n]; double[] e = new double [n]; double[] work = new double [m]; bool wantu = true; bool wantv = true; // Reduce A to bidiagonal form, storing the diagonal elements // in s and the super-diagonal elements in e. int nct = Math.Min(m-1,n); int nrt = Math.Max(0,Math.Min(n-2,m)); for (int k = 0; k < Math.Max(nct,nrt); k++) { if (k < nct) { // Compute the transformation for the k-th column and // place the k-th diagonal in s[k]. // Compute 2-norm of k-th column without under/overflow. s[k] = 0; for (int i = k; i < m; i++) { s[k] = MathUtils.Hypot(s[k],A[i][k]); } if (s[k] != 0.0) { if (A[k][k] < 0.0) { s[k] = -s[k]; } for (int i = k; i < m; i++) { A[i][k] /= s[k]; } A[k][k] += 1.0; } s[k] = -s[k]; } for (int j = k+1; j < n; j++) { if ((k < nct) & (s[k] != 0.0)) { // Apply the transformation. double t = 0; for (int i = k; i < m; i++) { t += A[i][k]*A[i][j]; } t = -t/A[k][k]; for (int i = k; i < m; i++) { A[i][j] += t*A[i][k]; } } // Place the k-th row of A into e for the // subsequent calculation of the row transformation. e[j] = A[k][j]; } if (wantu & (k < nct)) { // Place the transformation in U for subsequent back // multiplication. for (int i = k; i < m; i++) { U[i][k] = A[i][k]; } } if (k < nrt) { // Compute the k-th row transformation and place the // k-th super-diagonal in e[k]. // Compute 2-norm without under/overflow. e[k] = 0; for (int i = k+1; i < n; i++) { e[k] = MathUtils.Hypot(e[k],e[i]); } if (e[k] != 0.0) { if (e[k+1] < 0.0) { e[k] = -e[k]; } for (int i = k+1; i < n; i++) { e[i] /= e[k]; } e[k+1] += 1.0; } e[k] = -e[k]; if ((k+1 < m) & (e[k] != 0.0)) { // Apply the transformation. for (int i = k+1; i < m; i++) { work[i] = 0.0; } for (int j = k+1; j < n; j++) { for (int i = k+1; i < m; i++) { work[i] += e[j]*A[i][j]; } } for (int j = k+1; j < n; j++) { double t = -e[j]/e[k+1]; for (int i = k+1; i < m; i++) { A[i][j] += t*work[i]; } } } if (wantv) { // Place the transformation in V for subsequent // back multiplication. for (int i = k+1; i < n; i++) { V[i][k] = e[i]; } } } } // Set up the final bidiagonal matrix or order p. int p = Math.Min(n,m+1); if (nct < n) { s[nct] = A[nct][nct]; } if (m < p) { s[p-1] = 0.0; } if (nrt+1 < p) { e[nrt] = A[nrt][p-1]; } e[p-1] = 0.0; // If required, generate U. if (wantu) { for (int j = nct; j < nu; j++) { for (int i = 0; i < m; i++) { U[i][j] = 0.0; } U[j][j] = 1.0; } for (int k = nct-1; k >= 0; k--) { if (s[k] != 0.0) { for (int j = k+1; j < nu; j++) { double t = 0; for (int i = k; i < m; i++) { t += U[i][k]*U[i][j]; } t = -t/U[k][k]; for (int i = k; i < m; i++) { U[i][j] += t*U[i][k]; } } for (int i = k; i < m; i++) { U[i][k] = -U[i][k]; } U[k][k] = 1.0 + U[k][k]; for (int i = 0; i < k-1; i++) { U[i][k] = 0.0; } } else { for (int i = 0; i < m; i++) { U[i][k] = 0.0; } U[k][k] = 1.0; } } } // If required, generate V. if (wantv) { for (int k = n-1; k >= 0; k--) { if ((k < nrt) & (e[k] != 0.0)) { for (int j = k+1; j < nu; j++) { double t = 0; for (int i = k+1; i < n; i++) { t += V[i][k]*V[i][j]; } t = -t/V[k+1][k]; for (int i = k+1; i < n; i++) { V[i][j] += t*V[i][k]; } } } for (int i = 0; i < n; i++) { V[i][k] = 0.0; } V[k][k] = 1.0; } } // Main iteration loop for the singular values. int pp = p-1; int iter = 0; double eps = Math.Pow(2.0,-52.0); double tiny = Math.Pow(2.0,-966.0); while (p > 0) { int k, kase; // Here is where a test for too many iterations would go. // This section of the program inspects for // negligible elements in the s and e arrays. On // completion the variables kase and k are set as follows. // kase = 1 if s(p) and e[k-1] are negligible and k<p // kase = 2 if s(k) is negligible and k<p // kase = 3 if e[k-1] is negligible, k<p, and // s(k), ..., s(p) are not negligible (qr step). // kase = 4 if e(p-1) is negligible (convergence). for (k = p-2; k >= -1; k--) { if (k == -1) { break; } if (Math.Abs(e[k]) <= tiny + eps*(Math.Abs(s[k]) + Math.Abs(s[k+1]))) { e[k] = 0.0; break; } } if (k == p-2) { kase = 4; } else { int ks; for (ks = p-1; ks >= k; ks--) { if (ks == k) { break; } double t = (ks != p ? Math.Abs(e[ks]) : 0.0) + (ks != k+1 ? Math.Abs(e[ks-1]) : 0.0); if (Math.Abs(s[ks]) <= tiny + eps*t) { s[ks] = 0.0; break; } } if (ks == k) { kase = 3; } else if (ks == p-1) { kase = 1; } else { kase = 2; k = ks; } } k++; // Perform the task indicated by kase. switch (kase) { // Deflate negligible s(p). case 1: { double f = e[p-2]; e[p-2] = 0.0; for (int j = p-2; j >= k; j--) { double t = MathUtils.Hypot(s[j],f); double cs = s[j]/t; double sn = f/t; s[j] = t; if (j != k) { f = -sn*e[j-1]; e[j-1] = cs*e[j-1]; } if (wantv) { for (int i = 0; i < n; i++) { t = cs*V[i][j] + sn*V[i][p-1]; V[i][p-1] = -sn*V[i][j] + cs*V[i][p-1]; V[i][j] = t; } } } } break; // Split at negligible s(k). case 2: { double f = e[k-1]; e[k-1] = 0.0; for (int j = k; j < p; j++) { double t = MathUtils.Hypot(s[j],f); double cs = s[j]/t; double sn = f/t; s[j] = t; f = -sn*e[j]; e[j] = cs*e[j]; if (wantu) { for (int i = 0; i < m; i++) { t = cs*U[i][j] + sn*U[i][k-1]; U[i][k-1] = -sn*U[i][j] + cs*U[i][k-1]; U[i][j] = t; } } } } break; // Perform one qr step. case 3: { // Calculate the shift. double scale = Math.Max(Math.Max(Math.Max(Math.Max(Math.Abs(s[p-1]),Math.Abs(s[p-2])),Math.Abs(e[p-2])), Math.Abs(s[k])),Math.Abs(e[k])); double sp = s[p-1]/scale; double spm1 = s[p-2]/scale; double epm1 = e[p-2]/scale; double sk = s[k]/scale; double ek = e[k]/scale; double b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0; double c = (sp*epm1)*(sp*epm1); double shift = 0.0; if ((b != 0.0) | (c != 0.0)) { shift = Math.Sqrt(b*b + c); if (b < 0.0) { shift = -shift; } shift = c/(b + shift); } double f = (sk + sp)*(sk - sp) + shift; double g = sk*ek; // Chase zeros. for (int j = k; j < p-1; j++) { double t = MathUtils.Hypot(f,g); double cs = f/t; double sn = g/t; if (j != k) { e[j-1] = t; } f = cs*s[j] + sn*e[j]; e[j] = cs*e[j] - sn*s[j]; g = sn*s[j+1]; s[j+1] = cs*s[j+1]; if (wantv) { for (int i = 0; i < n; i++) { t = cs*V[i][j] + sn*V[i][j+1]; V[i][j+1] = -sn*V[i][j] + cs*V[i][j+1]; V[i][j] = t; } } t = MathUtils.Hypot(f,g); cs = f/t; sn = g/t; s[j] = t; f = cs*e[j] + sn*s[j+1]; s[j+1] = -sn*e[j] + cs*s[j+1]; g = sn*e[j+1]; e[j+1] = cs*e[j+1]; if (wantu && (j < m-1)) { for (int i = 0; i < m; i++) { t = cs*U[i][j] + sn*U[i][j+1]; U[i][j+1] = -sn*U[i][j] + cs*U[i][j+1]; U[i][j] = t; } } } e[p-2] = f; iter = iter + 1; } break; // Convergence. case 4: { // Make the singular values positive. if (s[k] <= 0.0) { s[k] = (s[k] < 0.0 ? -s[k] : 0.0); if (wantv) { for (int i = 0; i <= pp; i++) { V[i][k] = -V[i][k]; } } } // Order the singular values. while (k < pp) { if (s[k] >= s[k+1]) { break; } double t = s[k]; s[k] = s[k+1]; s[k+1] = t; if (wantv && (k < n-1)) { for (int i = 0; i < n; i++) { t = V[i][k+1]; V[i][k+1] = V[i][k]; V[i][k] = t; } } if (wantu && (k < m-1)) { for (int i = 0; i < m; i++) { t = U[i][k+1]; U[i][k+1] = U[i][k]; U[i][k] = t; } } k++; } iter = 0; p--; } break; } } }