private IEnumerable <SuspiciousNode> SelectSuspiciousElementsWithMaskWithSmallGrowing( IReadOnlyList <List <SuspiciousNode> > candidateNodesLists, BigInteger xor, BigInteger mask) { for (int i = 0; i < candidateNodesLists.Count; i++) { var vector = BigInteger.Zero; var candidates = candidateNodesLists[i]; while (true) { var minDiffCount = int.MaxValue; SuspiciousNode newNode = null; foreach (var candidate in candidates) { var newVector = (vector | (candidate.Vector ^ xor)) & mask; var diff = newVector ^ vector; var diffCount = LearningExperimentUtil.CountBits(diff); if (diffCount > 0 && minDiffCount > diffCount) { minDiffCount = diffCount; vector = newVector; newNode = candidate; } } if (newNode != null) { yield return(newNode); } else { break; } } } }
private SuspiciousNode SelectMostDifferentElement( IEnumerable <BigInteger> existings, IEnumerable <SuspiciousNode> candidates, BigInteger mask) { if (!existings.Any()) { return(candidates.FirstOrDefault()); } var maxDiff = 0; SuspiciousNode ret = null; foreach (var candidate in candidates) { var vector = candidate.Vector & mask; var diff = existings.Min(f => LearningExperimentUtil.CountBits((f & mask) ^ vector)); if (maxDiff < diff) { maxDiff = diff; ret = candidate; } } return(ret); }
public ClassificationResult Classify( int count, Classifier classifier, GroupCache groupCache, EncodingResult encodingResult, RevealedVectorSet trainingSet = null) { trainingSet = trainingSet ?? new RevealedVectorSet(); var correctlyAccepted = 0; var correctlyRejected = 0; var wronglyAccepted = 0; var wronglyRejected = 0; var correctlyRejectedInRejecting = 0; var wronglyRejectedInRejecting = 0; var rejectAccept = new List <List <SuspiciousNode> >(); var rejectReject = new List <List <SuspiciousNode> >(); var acceptAccept = new List <List <SuspiciousNode> >(); var acceptReject = new List <List <SuspiciousNode> >(); for (int i = 0; i < classifier.GroupCount; i++) { rejectAccept.Add(new List <SuspiciousNode>()); rejectReject.Add(new List <SuspiciousNode>()); acceptAccept.Add(new List <SuspiciousNode>()); acceptReject.Add(new List <SuspiciousNode>()); } var wrongNodeCount = 0; var wronglyRejectedFeatures = new List <BigInteger>(); var wronglyAcceptedFeatures = new List <BigInteger>(); foreach (var vectorAndGroupPath in encodingResult.IdealVectorSet.Accepted) { var vector = vectorAndGroupPath.Key; var groupPath = vectorAndGroupPath.Value; var groupIndex = groupCache.GetGroupIndex(vector); var rejected = classifier.IsRejected(vector, groupIndex); var accepted = classifier.IsAccepted(vector, groupIndex); if (!trainingSet.Accepted.ContainsKey(vector) && !trainingSet.Rejected.ContainsKey(vector)) { var target = new SuspiciousNode { Vector = vector, GroupKey = groupPath, Used = false, }; if (accepted) { if (!rejected) { acceptAccept[groupIndex].Add(target); } else { acceptReject[groupIndex].Add(target); } } else { if (!rejected) { rejectAccept[groupIndex].Add(target); } else { rejectReject[groupIndex].Add(target); } } } if (!accepted) { wronglyRejected++; wrongNodeCount += encodingResult.Vector2Count[vector]; wronglyRejectedFeatures.Add(vector); } else if (!rejected) { correctlyAccepted++; } else { wronglyRejectedInRejecting++; wrongNodeCount += encodingResult.Vector2Count[vector]; wronglyRejectedFeatures.Add(vector); } } foreach (var vectorAndGroupPath in encodingResult.IdealVectorSet.Rejected) { var vector = vectorAndGroupPath.Key; var groupPath = vectorAndGroupPath.Value; var groupIndex = groupCache.GetGroupIndex(vector); var rejected = classifier.IsRejected(vector, groupIndex); var accepted = classifier.IsAccepted(vector, groupIndex); if (!trainingSet.Accepted.ContainsKey(vector) && !trainingSet.Rejected.ContainsKey(vector)) { var target = new SuspiciousNode { Vector = vector, GroupKey = groupPath, Used = false, }; if (accepted) { if (!rejected) { acceptAccept[groupIndex].Add(target); } else { acceptReject[groupIndex].Add(target); } } else { if (!rejected) { rejectAccept[groupIndex].Add(target); } else { rejectReject[groupIndex].Add(target); } } } if (!accepted) { correctlyRejected++; } else if (!rejected) { wronglyAccepted++; wrongNodeCount += encodingResult.Vector2Count[vector]; wronglyAcceptedFeatures.Add(vector); } else { correctlyRejectedInRejecting++; } } Console.WriteLine("done"); Console.WriteLine( "WA: " + wronglyAccepted + ", WR: " + wronglyRejected + "/" + wronglyRejectedInRejecting + ", CA: " + correctlyAccepted + ", CR: " + correctlyRejected + "/" + correctlyRejectedInRejecting); Console.WriteLine( "TR: " + trainingSet.Count + ", AF: " + String.Join(", ", classifier.CountAcceptingFeatures()) + ", RF: " + String.Join(", ", classifier.CountRejectingFeatures())); var wrongFeatureCount = wronglyAccepted + wronglyRejected + wronglyRejectedInRejecting; var selector = new SuspiciousNodeSelector(classifier.AcceptingFeatureBitMask, classifier.RejectingFeatureBitMask); var suspiciousNodes = selector.SelectSuspiciousNodes(count, classifier, acceptAccept, acceptReject, rejectAccept, rejectReject); return(new ClassificationResult(suspiciousNodes, wronglyAcceptedFeatures, wronglyRejectedFeatures, wrongFeatureCount, wrongNodeCount, encodingResult)); }