protected override void DoRender() { // Calculate elapsed seconds var time = clock.ElapsedMilliseconds / 1000.0f; // Retrieve device context var context = this.DeviceManager.Direct3DContext; // Calculate skin matrices for each bone ConstantBuffers.PerArmature skinMatrices = new ConstantBuffers.PerArmature(); if (mesh.Bones != null) { // Retrieve each bone's local transform for (var i = 0; i < mesh.Bones.Count; i++) { skinMatrices.Bones[i] = mesh.Bones[i].BoneLocalTransform; } // Load bone transforms from animation frames if (CurrentAnimation.HasValue) { // Keep track of the last key-frame used for each bone Mesh.Keyframe?[] lastKeyForBones = new Mesh.Keyframe?[mesh.Bones.Count]; // Keep track of whether a bone has been interpolated bool[] lerpedBones = new bool[mesh.Bones.Count]; for (var i = 0; i < CurrentAnimation.Value.Keyframes.Count; i++) { // Retrieve current key-frame var frame = CurrentAnimation.Value.Keyframes[i]; // If the current frame is not in the future if (frame.Time <= time) { // Keep track of last key-frame for bone lastKeyForBones[frame.BoneIndex] = frame; // Retrieve transform from current key-frame skinMatrices.Bones[frame.BoneIndex] = frame.Transform; } // Frame is in the future, check if we should interpolate else { // Only interpolate a bone's key-frames ONCE if (!lerpedBones[frame.BoneIndex]) { // Retrieve the previous key-frame if exists Mesh.Keyframe prevFrame; if (lastKeyForBones[frame.BoneIndex] != null) { prevFrame = lastKeyForBones[frame.BoneIndex].Value; } else { continue; // nothing to interpolate } // Make sure we only interpolate with // one future frame for this bone lerpedBones[frame.BoneIndex] = true; // Calculate time difference between frames var frameLength = frame.Time - prevFrame.Time; var timeDiff = time - prevFrame.Time; var amount = timeDiff / frameLength; // Interpolation using Lerp on scale and translation, and Slerp on Rotation (Quaternion) Vector3 t1, t2; // Translation Quaternion q1, q2; // Rotation float s1, s2; // Scale // Decompose the previous key-frame's transform prevFrame.Transform.DecomposeUniformScale(out s1, out q1, out t1); // Decompose the current key-frame's transform frame.Transform.DecomposeUniformScale(out s2, out q2, out t2); // Perform interpolation and reconstitute matrix skinMatrices.Bones[frame.BoneIndex] = Matrix.Scaling(MathUtil.Lerp(s1, s2, amount)) * Matrix.RotationQuaternion(Quaternion.Slerp(q1, q2, amount)) * Matrix.Translation(Vector3.Lerp(t1, t2, amount)); } } } } // Apply parent bone transforms // We assume here that the first bone has no parent // and that each parent bone appears before children for (var i = 1; i < mesh.Bones.Count; i++) { var bone = mesh.Bones[i]; if (bone.ParentIndex > -1) { var parentTransform = skinMatrices.Bones[bone.ParentIndex]; skinMatrices.Bones[i] = (skinMatrices.Bones[i] * parentTransform); } } // Change the bone transform from rest pose space into bone space (using the inverse of the bind/rest pose) for (var i = 0; i < mesh.Bones.Count; i++) { skinMatrices.Bones[i] = Matrix.Transpose(mesh.Bones[i].InvBindPose * skinMatrices.Bones[i]); } // Check need to loop animation if (!PlayOnce && CurrentAnimation.HasValue && CurrentAnimation.Value.EndTime <= time) { this.Clock.Restart(); } } // Update the constant buffer with the skin matrices for each bone context.UpdateSubresource(skinMatrices.Bones, PerArmatureBuffer); // Draw sub-meshes grouped by material for (var mIndx = 0; mIndx < mesh.Materials.Count; mIndx++) { // Retrieve sub meshes for this material var subMeshesForMaterial = (from sm in mesh.SubMeshes where sm.MaterialIndex == mIndx select sm).ToArray(); // If the material buffer is available and there are submeshes // using the material update the PerMaterialBuffer if (PerMaterialBuffer != null && subMeshesForMaterial.Length > 0) { // update the PerMaterialBuffer constant buffer var material = new ConstantBuffers.PerMaterial() { Ambient = new Color4(mesh.Materials[mIndx].Ambient), Diffuse = new Color4(mesh.Materials[mIndx].Diffuse), Emissive = new Color4(mesh.Materials[mIndx].Emissive), Specular = new Color4(mesh.Materials[mIndx].Specular), SpecularPower = mesh.Materials[mIndx].SpecularPower, UVTransform = mesh.Materials[mIndx].UVTransform, }; int texIndxOffset = mIndx * Common.Mesh.MaxTextures; material.HasTexture = (uint)(textureViews[texIndxOffset] != null ? 1 : 0); // 0=false material.HasNormalMap = (uint)(EnableNormalMap && textureViews[texIndxOffset + 1] != null ? 1 : 0); // 0=false // Bind textures to the pixel shader context.PixelShader.SetShaderResources(0, textureViews.GetRange(texIndxOffset, Common.Mesh.MaxTextures).ToArray()); // Set texture sampler state context.PixelShader.SetSampler(0, samplerState); // Update material buffer context.UpdateSubresource(ref material, PerMaterialBuffer); } // For each sub-mesh foreach (var subMesh in subMeshesForMaterial) { // Ensure the vertex buffer and index buffers are in range if (subMesh.VertexBufferIndex < vertexBuffers.Count && subMesh.IndexBufferIndex < indexBuffers.Count) { // Retrieve and set the vertex and index buffers var vertexBuffer = vertexBuffers[(int)subMesh.VertexBufferIndex]; context.InputAssembler.SetVertexBuffers(0, new VertexBufferBinding(vertexBuffer, Utilities.SizeOf <Vertex>(), 0)); context.InputAssembler.SetIndexBuffer(indexBuffers[(int)subMesh.IndexBufferIndex], Format.R16_UInt, 0); // Set topology context.InputAssembler.PrimitiveTopology = SharpDX.Direct3D.PrimitiveTopology.TriangleList; } // Draw the sub-mesh (includes Primitive count which we multiply by 3) // The submesh also includes a start index into the vertex buffer context.DrawIndexed((int)subMesh.PrimCount * 3, (int)subMesh.StartIndex, 0); } } // If there are no materials if (mesh.Materials.Count == 0) { foreach (var subMesh in mesh.SubMeshes) { // Ensure the vertex buffer and index buffers are in range if (subMesh.VertexBufferIndex < vertexBuffers.Count && subMesh.IndexBufferIndex < indexBuffers.Count) { // Retrieve and set the vertex and index buffers var vertexBuffer = vertexBuffers[(int)subMesh.VertexBufferIndex]; context.InputAssembler.SetVertexBuffers(0, new VertexBufferBinding(vertexBuffer, Utilities.SizeOf <Vertex>(), 0)); context.InputAssembler.SetIndexBuffer(indexBuffers[(int)subMesh.IndexBufferIndex], Format.R16_UInt, 0); // Set topology context.InputAssembler.PrimitiveTopology = SharpDX.Direct3D.PrimitiveTopology.TriangleList; } // Draw the sub-mesh (includes Primitive count which we multiply by 3) // The submesh also includes a start index into the vertex buffer context.DrawIndexed((int)subMesh.PrimCount * 3, (int)subMesh.StartIndex, 0); } } }
public override void Run() { #region Create renderers // Note: the renderers take care of creating their own // device resources and listen for DeviceManager.OnInitialize // Create a axis-grid renderer var axisGrid = ToDispose(new AxisGridRenderer()); axisGrid.Initialize(this); // Create and initialize the mesh renderer var loadedMesh = Common.Mesh.LoadFromFile("PhysicsScene1.cmo"); List <MeshRenderer> meshes = new List <MeshRenderer>(); meshes.AddRange(from mesh in loadedMesh select ToDispose(new MeshRenderer(mesh))); foreach (var m in meshes) { m.Initialize(this); m.World = Matrix.Identity; } // Set the first animation as the current animation and start clock foreach (var m in meshes) { if (m.Mesh.Animations != null && m.Mesh.Animations.Any()) { m.CurrentAnimation = m.Mesh.Animations.First().Value; } m.Clock.Start(); } loadedMesh = Common.Mesh.LoadFromFile("SubdividedPlane.cmo"); var waterMesh = ToDispose(new MeshRenderer(loadedMesh.First())); waterMesh.Initialize(this); loadedMesh = Common.Mesh.LoadFromFile("Bataux.cmo"); List <MeshRenderer> shipMeshes = new List <MeshRenderer>(); shipMeshes.AddRange((from mesh in loadedMesh select ToDispose(new MeshRenderer(mesh)))); foreach (var m in shipMeshes) { m.Initialize(this); m.World = Matrix.Scaling(3) * Matrix.RotationAxis(Vector3.UnitY, -1.57079f); } //var anchor = new SphereRenderer(0.05f); //anchor.Initialize(this); //var anchorWorld = Matrix.Identity; //var sphere = new SphereRenderer(); //sphere.Initialize(this); //var sphereWorld = Matrix.Identity; // Create and initialize a Direct2D FPS text renderer var fps = ToDispose(new Common.FpsRenderer("Calibri", Color.CornflowerBlue, new Point(8, 8), 16)); fps.Initialize(this); // Create and initialize a general purpose Direct2D text renderer // This will display some instructions and the current view and rotation offsets var textRenderer = ToDispose(new Common.TextRenderer("Calibri", Color.CornflowerBlue, new Point(8, 40), 12)); textRenderer.Initialize(this); #endregion #region Initialize physics engine CollisionConfiguration defaultConfig = new DefaultCollisionConfiguration(); ConstraintSolver solver = new SequentialImpulseConstraintSolver(); BulletSharp.Dispatcher dispatcher = new CollisionDispatcher(defaultConfig); BroadphaseInterface broadphase = new DbvtBroadphase(); DynamicsWorld world = null; Action initializePhysics = () => { RemoveAndDispose(ref world); world = ToDispose(new BulletSharp.DiscreteDynamicsWorld(dispatcher, broadphase, solver, defaultConfig)); world.Gravity = new Vector3(0, -10, 0); // For each mesh, create a RigidBody and add to "world" for simulation meshes.ForEach(m => { // We use the name of the mesh to determine the correct body if (String.IsNullOrEmpty(m.Mesh.Name)) { return; } var name = m.Mesh.Name.ToLower(); var extent = m.Mesh.Extent; BulletSharp.CollisionShape shape; #region Create collision shape if (name.Contains("box") || name.Contains("cube")) { // Assumes the box/cube has an axis-aligned neutral orientation shape = new BulletSharp.BoxShape( Math.Abs(extent.Max.Z - extent.Min.Z) / 2.0f, Math.Abs(extent.Max.Y - extent.Min.Y) / 2.0f, Math.Abs(extent.Max.X - extent.Min.X) / 2.0f); } else if (name.Contains("sphere")) { shape = new BulletSharp.SphereShape(extent.Radius); } else // use mesh vertices directly { // for each SubMesh, retrieve the vertex and index buffers // to create a TriangleMeshShape for collision detection. List <Vector3> vertices = new List <Vector3>(); List <int> indices = new List <int>(); int vertexOffset = 0; foreach (var sm in m.Mesh.SubMeshes) { vertexOffset += vertices.Count; indices.AddRange( (from indx in m.Mesh.IndexBuffers[(int)sm.IndexBufferIndex] select vertexOffset + (int)indx)); vertices.AddRange( (from v in m.Mesh .VertexBuffers[(int)sm.VertexBufferIndex] select v.Position - extent.Center)); } // Create the collision shape var iva = new BulletSharp.TriangleIndexVertexArray(indices.ToArray(), vertices.ToArray()); shape = new BulletSharp.BvhTriangleMeshShape(iva, true); } #endregion m.World = Matrix.Identity; // Reset mesh location float mass; Vector3 vec; shape.GetBoundingSphere(out vec, out mass); var body = new BulletSharp.RigidBody( new BulletSharp.RigidBodyConstructionInfo(name.Contains("static") ? 0 : mass, new MeshMotionState(m), shape, shape.CalculateLocalInertia(mass))); if (body.IsStaticObject) { body.Restitution = 1f; body.Friction = 0.4f; } // Add to the simulation world.AddRigidBody(body); }); #if DEBUG world.DebugDrawer = ToDispose(new PhysicsDebugDraw(this.DeviceManager)); world.DebugDrawer.DebugMode = DebugDrawModes.DrawAabb | DebugDrawModes.DrawWireframe; #endif }; initializePhysics(); // Newton's Cradle //var box = new Jitter.Dynamics.RigidBody(new Jitter.Collision.Shapes.BoxShape(7, 1, 2)); //box.Position = new Jitter.LinearMath.JVector(0, 8, 0); //world.AddBody(box); //box.IsStatic = true; //var anchorBody = new Jitter.Dynamics.RigidBody(new Jitter.Collision.Shapes.SphereShape(0.05f)); //anchorBody.Position = new Jitter.LinearMath.JVector(0, 4, 0); //world.AddBody(anchorBody); //anchorBody.IsStatic = true; //for (var bodyCount = -3; bodyCount < 4; bodyCount++) //{ // var testBody = new Jitter.Dynamics.RigidBody(new Jitter.Collision.Shapes.SphereShape(0.501f)); // testBody.Position = new Jitter.LinearMath.JVector(bodyCount, 0, 0); // world.AddBody(testBody); // world.AddConstraint(new Jitter.Dynamics.Constraints.PointPointDistance(box, testBody, // testBody.Position + Jitter.LinearMath.JVector.Up * 8f + Jitter.LinearMath.JVector.Forward * 3f + Jitter.LinearMath.JVector.Down * 0.5f, // testBody.Position) { Softness = 1.0f, BiasFactor = 0.8f }); // world.AddConstraint(new Jitter.Dynamics.Constraints.PointPointDistance(box, testBody, // testBody.Position + Jitter.LinearMath.JVector.Up * 8f + Jitter.LinearMath.JVector.Backward * 3f + Jitter.LinearMath.JVector.Down * 0.5f, // testBody.Position) { Softness = 1.0f, BiasFactor = 0.8f }); // testBody.Material.Restitution = 1.0f; // testBody.Material.StaticFriction = 1.0f; //} #endregion // Initialize the world matrix var worldMatrix = Matrix.Identity; // Set the camera position slightly behind (z) var cameraPosition = new Vector3(0, 1, 10); var cameraTarget = Vector3.Zero; // Looking at the origin 0,0,0 var cameraUp = Vector3.UnitY; // Y+ is Up // Prepare matrices // Create the view matrix from our camera position, look target and up direction var viewMatrix = Matrix.LookAtRH(cameraPosition, cameraTarget, cameraUp); viewMatrix.TranslationVector += new Vector3(0, -0.98f, 0); // Create the projection matrix /* FoV 60degrees = Pi/3 radians */ // Aspect ratio (based on window size), Near clip, Far clip var projectionMatrix = Matrix.PerspectiveFovRH((float)Math.PI / 3f, Width / (float)Height, 0.1f, 100f); // Maintain the correct aspect ratio on resize Window.Resize += (s, e) => { projectionMatrix = Matrix.PerspectiveFovRH((float)Math.PI / 3f, Width / (float)Height, 0.1f, 100f); }; bool debugDraw = false; bool paused = false; var simTime = new System.Diagnostics.Stopwatch(); simTime.Start(); float time = 0.0f; float timeStep = 0.0f; #region Rotation and window event handlers // Create a rotation vector to keep track of the rotation // around each of the axes var rotation = new Vector3(0.0f, 0.0f, 0.0f); // We will call this action to update text // for the text renderer Action updateText = () => { textRenderer.Text = String.Format("Rotation ({0}) (Up/Down Left/Right Wheel+-)\nView ({1}) (A/D, W/S, Shift+Wheel+-)" //+ "\nPress 1,2,3,4,5,6,7,8 to switch shaders" + "\nTime: {2:0.00} (P to toggle, R to reset scene)" + "\nPhysics debug draw: {3} (E to toggle)" + "\nBackspace: toggle between Physics and Waves", rotation, viewMatrix.TranslationVector, simTime.Elapsed.TotalSeconds, debugDraw); }; Dictionary <Keys, bool> keyToggles = new Dictionary <Keys, bool>(); keyToggles[Keys.Z] = false; keyToggles[Keys.F] = false; keyToggles[Keys.Back] = false; // Support keyboard/mouse input to rotate or move camera view var moveFactor = 0.02f; // how much to change on each keypress var shiftKey = false; var ctrlKey = false; var background = Color.White; var showNormals = false; var enableNormalMap = true; Window.KeyDown += (s, e) => { var context = DeviceManager.Direct3DContext; shiftKey = e.Shift; ctrlKey = e.Control; switch (e.KeyCode) { // WASD -> pans view case Keys.A: viewMatrix.TranslationVector += new Vector3(moveFactor * 2, 0f, 0f); break; case Keys.D: viewMatrix.TranslationVector -= new Vector3(moveFactor * 2, 0f, 0f); break; case Keys.S: if (shiftKey) { viewMatrix.TranslationVector += new Vector3(0f, moveFactor * 2, 0f); } else { viewMatrix.TranslationVector -= new Vector3(0f, 0f, 1) * moveFactor * 2; } break; case Keys.W: if (shiftKey) { viewMatrix.TranslationVector -= new Vector3(0f, moveFactor * 2, 0f); } else { viewMatrix.TranslationVector += new Vector3(0f, 0f, 1) * moveFactor * 2; } break; // Up/Down and Left/Right - rotates around X / Y respectively // (Mouse wheel rotates around Z) case Keys.Down: worldMatrix *= Matrix.RotationX(moveFactor); rotation += new Vector3(moveFactor, 0f, 0f); break; case Keys.Up: worldMatrix *= Matrix.RotationX(-moveFactor); rotation -= new Vector3(moveFactor, 0f, 0f); break; case Keys.Left: worldMatrix *= Matrix.RotationY(moveFactor); rotation += new Vector3(0f, moveFactor, 0f); break; case Keys.Right: worldMatrix *= Matrix.RotationY(-moveFactor); rotation -= new Vector3(0f, moveFactor, 0f); break; case Keys.T: fps.Show = !fps.Show; textRenderer.Show = !textRenderer.Show; break; case Keys.B: if (background == Color.White) { background = new Color(30, 30, 34); } else { background = Color.White; } break; case Keys.G: axisGrid.Show = !axisGrid.Show; break; case Keys.P: paused = !paused; if (paused) { simTime.Stop(); } else { simTime.Start(); } // Pause or resume mesh animation meshes.ForEach(m => { if (m.Clock.IsRunning) { m.Clock.Stop(); } else { m.Clock.Start(); } }); updateText(); break; case Keys.X: // To test for correct resource recreation // Simulate device reset or lost. System.Diagnostics.Debug.WriteLine(SharpDX.Diagnostics.ObjectTracker.ReportActiveObjects()); DeviceManager.Initialize(DeviceManager.Dpi); System.Diagnostics.Debug.WriteLine(SharpDX.Diagnostics.ObjectTracker.ReportActiveObjects()); break; case Keys.Z: keyToggles[Keys.Z] = !keyToggles[Keys.Z]; if (keyToggles[Keys.Z]) { context.PixelShader.Set(depthPixelShader); } else { context.PixelShader.Set(pixelShader); } break; case Keys.F: keyToggles[Keys.F] = !keyToggles[Keys.F]; RasterizerStateDescription rasterDesc; if (context.Rasterizer.State != null) { rasterDesc = context.Rasterizer.State.Description; } else { rasterDesc = new RasterizerStateDescription() { CullMode = CullMode.None, FillMode = FillMode.Solid } }; if (keyToggles[Keys.F]) { rasterDesc.FillMode = FillMode.Wireframe; context.Rasterizer.State = ToDispose(new RasterizerState(context.Device, rasterDesc)); } else { rasterDesc.FillMode = FillMode.Solid; context.Rasterizer.State = ToDispose(new RasterizerState(context.Device, rasterDesc)); } break; case Keys.N: if (!shiftKey) { showNormals = !showNormals; } else { enableNormalMap = !enableNormalMap; } break; case Keys.E: debugDraw = !debugDraw; break; case Keys.R: //world = new Jitter.World(new Jitter.Collision.CollisionSystemSAP()); initializePhysics(); if (simTime.IsRunning) { simTime.Restart(); } else { simTime.Reset(); } break; case Keys.D1: context.PixelShader.Set(pixelShader); break; case Keys.D2: context.PixelShader.Set(lambertShader); break; case Keys.D3: context.PixelShader.Set(phongShader); break; case Keys.D4: context.PixelShader.Set(blinnPhongShader); break; case Keys.Back: keyToggles[Keys.Back] = !keyToggles[Keys.Back]; break; } updateText(); }; Window.KeyUp += (s, e) => { // Clear the shift/ctrl keys so they aren't sticky if (e.KeyCode == Keys.ShiftKey) { shiftKey = false; } if (e.KeyCode == Keys.ControlKey) { ctrlKey = false; } }; Window.MouseWheel += (s, e) => { if (shiftKey) { // Zoom in/out viewMatrix.TranslationVector += new Vector3(0f, 0f, (e.Delta / 120f) * moveFactor * 2); } else { // rotate around Z-axis viewMatrix *= Matrix.RotationZ((e.Delta / 120f) * moveFactor); rotation += new Vector3(0f, 0f, (e.Delta / 120f) * moveFactor); } updateText(); }; var lastX = 0; var lastY = 0; Window.MouseDown += (s, e) => { if (e.Button == MouseButtons.Left) { lastX = e.X; lastY = e.Y; } }; Window.MouseMove += (s, e) => { if (e.Button == MouseButtons.Left) { var yRotate = lastX - e.X; var xRotate = lastY - e.Y; lastY = e.Y; lastX = e.X; // Mouse move changes viewMatrix *= Matrix.RotationX(-xRotate * moveFactor); viewMatrix *= Matrix.RotationY(-yRotate * moveFactor); updateText(); } }; // Display instructions with initial values updateText(); #endregion var clock = new System.Diagnostics.Stopwatch(); clock.Start(); #region Render loop // Create and run the render loop RenderLoop.Run(Window, () => { // Update simulation, at 60fps if (!paused) { if ((float)simTime.Elapsed.TotalSeconds < time) { time = 0; timeStep = 0; } timeStep = ((float)simTime.Elapsed.TotalSeconds - time); time = (float)simTime.Elapsed.TotalSeconds; world.StepSimulation(timeStep, 7); // For how to choose the maxSubSteps see: // http://www.bulletphysics.org/mediawiki-1.5.8/index.php/Stepping_The_World } updateText(); // Start of frame: // Retrieve immediate context var context = DeviceManager.Direct3DContext; // Clear depth stencil view context.ClearDepthStencilView(DepthStencilView, DepthStencilClearFlags.Depth | DepthStencilClearFlags.Stencil, 1.0f, 0); // Clear render target view context.ClearRenderTargetView(RenderTargetView, background); // Create viewProjection matrix var viewProjection = Matrix.Multiply(viewMatrix, projectionMatrix); // Extract camera position from view var camPosition = Matrix.Transpose(Matrix.Invert(viewMatrix)).Column4; cameraPosition = new Vector3(camPosition.X, camPosition.Y, camPosition.Z); var perFrame = new ConstantBuffers.PerFrame(); perFrame.Light.Color = new Color(0.8f, 0.8f, 0.8f, 1.0f); var lightDir = Vector3.Transform(new Vector3(1f, -1f, -1f), worldMatrix); perFrame.Light.Direction = new Vector3(lightDir.X, lightDir.Y, lightDir.Z); perFrame.CameraPosition = cameraPosition; perFrame.Time = (float)simTime.Elapsed.TotalSeconds; // Provide simulation time to shader context.UpdateSubresource(ref perFrame, perFrameBuffer); // Render each object var perMaterial = new ConstantBuffers.PerMaterial(); perMaterial.Ambient = new Color4(0.2f); perMaterial.Diffuse = Color.White; perMaterial.Emissive = new Color4(0); perMaterial.Specular = Color.White; perMaterial.SpecularPower = 20f; perMaterial.HasTexture = 0; perMaterial.UVTransform = Matrix.Identity; context.UpdateSubresource(ref perMaterial, perMaterialBuffer); var perObject = new ConstantBuffers.PerObject(); // MESH if (!keyToggles[Keys.Back]) { meshes.ForEach((m) => { perObject.World = m.World * worldMatrix; // Provide the material constant buffer to the mesh renderer perObject.WorldInverseTranspose = Matrix.Transpose(Matrix.Invert(perObject.World)); perObject.WorldViewProjection = perObject.World * viewProjection; perObject.ViewProjection = viewProjection; perObject.Transpose(); context.UpdateSubresource(ref perObject, perObjectBuffer); m.PerMaterialBuffer = perMaterialBuffer; m.PerArmatureBuffer = perArmatureBuffer; m.Render(); if (showNormals) { using (var prevPixelShader = context.PixelShader.Get()) { perMaterial.HasTexture = 0; perMaterial.UVTransform = Matrix.Identity; context.UpdateSubresource(ref perMaterial, perMaterialBuffer); context.PixelShader.Set(pixelShader); context.GeometryShader.Set(debugNormals); m.Render(); context.PixelShader.Set(prevPixelShader); context.GeometryShader.Set(null); } } }); if (debugDraw) { perObject.World = Matrix.Identity; perObject.WorldInverseTranspose = Matrix.Transpose(Matrix.Invert(perObject.World)); perObject.WorldViewProjection = perObject.World * viewProjection; perObject.ViewProjection = viewProjection; perObject.Transpose(); context.UpdateSubresource(ref perObject, perObjectBuffer); (world.DebugDrawer as PhysicsDebugDraw).DrawDebugWorld(world); context.VertexShader.Set(vertexShader); context.PixelShader.Set(pixelShader); context.InputAssembler.InputLayout = vertexLayout; } } else { perObject.World = waterMesh.World * worldMatrix; perObject.WorldInverseTranspose = Matrix.Transpose(Matrix.Invert(perObject.World)); perObject.WorldViewProjection = perObject.World * viewProjection; perObject.ViewProjection = viewProjection; perObject.Transpose(); context.UpdateSubresource(ref perObject, perObjectBuffer); waterMesh.EnableNormalMap = enableNormalMap; waterMesh.PerMaterialBuffer = perMaterialBuffer; waterMesh.PerArmatureBuffer = perArmatureBuffer; context.VertexShader.Set(waterVertexShader); waterMesh.Render(); if (showNormals) { using (var prevPixelShader = context.PixelShader.Get()) { perMaterial.HasTexture = 0; perMaterial.UVTransform = Matrix.Identity; context.UpdateSubresource(ref perMaterial, perMaterialBuffer); context.PixelShader.Set(pixelShader); context.GeometryShader.Set(debugNormals); waterMesh.Render(); context.PixelShader.Set(prevPixelShader); context.GeometryShader.Set(null); } } context.VertexShader.Set(vertexShader); foreach (var m in shipMeshes) { perObject.World = m.World * worldMatrix; perObject.WorldInverseTranspose = Matrix.Transpose(Matrix.Invert(perObject.World)); perObject.WorldViewProjection = perObject.World * viewProjection; perObject.Transpose(); context.UpdateSubresource(ref perObject, perObjectBuffer); // Provide the material constant buffer to the mesh renderer perObject.WorldInverseTranspose = Matrix.Transpose(Matrix.Invert(perObject.World)); perObject.WorldViewProjection = perObject.World * viewProjection; perObject.ViewProjection = viewProjection; perObject.Transpose(); context.UpdateSubresource(ref perObject, perObjectBuffer); m.PerMaterialBuffer = perMaterialBuffer; m.PerArmatureBuffer = perArmatureBuffer; m.Render(); if (showNormals) { using (var prevPixelShader = context.PixelShader.Get()) { perMaterial.HasTexture = 0; perMaterial.UVTransform = Matrix.Identity; context.UpdateSubresource(ref perMaterial, perMaterialBuffer); context.PixelShader.Set(pixelShader); context.GeometryShader.Set(debugNormals); m.Render(); context.PixelShader.Set(prevPixelShader); context.GeometryShader.Set(null); } } } } perMaterial.Ambient = new Color4(0.2f); perMaterial.Diffuse = Color.White; perMaterial.Emissive = new Color4(0); perMaterial.Specular = Color.White; perMaterial.SpecularPower = 20f; perMaterial.UVTransform = Matrix.Identity; context.UpdateSubresource(ref perMaterial, perMaterialBuffer); // AXIS GRID context.HullShader.Set(null); context.DomainShader.Set(null); context.GeometryShader.Set(null); using (var prevPixelShader = context.PixelShader.Get()) using (var prevVertexShader = context.VertexShader.Get()) { context.VertexShader.Set(vertexShader); context.PixelShader.Set(pixelShader); perObject.World = worldMatrix; perObject.WorldInverseTranspose = Matrix.Transpose(Matrix.Invert(perObject.World)); perObject.WorldViewProjection = perObject.World * viewProjection; perObject.ViewProjection = viewProjection; perObject.Transpose(); context.UpdateSubresource(ref perObject, perObjectBuffer); axisGrid.Render(); context.PixelShader.Set(prevPixelShader); context.VertexShader.Set(prevVertexShader); } // Render FPS fps.Render(); // Render instructions + position changes textRenderer.Render(); // Present the frame Present(); }); #endregion }
protected override void DoRender() { // Calculate elapsed seconds var time = clock.ElapsedMilliseconds / 1000.0f; // Retrieve device context var context = this.DeviceManager.Direct3DContext; // Calculate skin matrices for each bone ConstantBuffers.PerArmature skinMatrices = new ConstantBuffers.PerArmature(); if (mesh.Bones != null) { // Retrieve each bone's local transform for (var i = 0; i < mesh.Bones.Count; i++) { skinMatrices.Bones[i] = mesh.Bones[i].BoneLocalTransform; } // Load bone transforms from animation frames if (CurrentAnimation.HasValue) { // Keep track of the last key-frame used for each bone Mesh.Keyframe?[] lastKeyForBones = new Mesh.Keyframe?[mesh.Bones.Count]; // Keep track of whether a bone has been interpolated bool[] lerpedBones = new bool[mesh.Bones.Count]; for (var i = 0; i < CurrentAnimation.Value.Keyframes.Count; i++) { // Retrieve current key-frame var frame = CurrentAnimation.Value.Keyframes[i]; // If the current frame is not in the future if (frame.Time <= time) { // Keep track of last key-frame for bone lastKeyForBones[frame.BoneIndex] = frame; // Retrieve transform from current key-frame skinMatrices.Bones[frame.BoneIndex] = frame.Transform; } // Frame is in the future, check if we should interpolate else { // Only interpolate a bone's key-frames ONCE if (!lerpedBones[frame.BoneIndex]) { // Retrieve the previous key-frame if exists Mesh.Keyframe prevFrame; if (lastKeyForBones[frame.BoneIndex] != null) prevFrame = lastKeyForBones[frame.BoneIndex].Value; else continue; // nothing to interpolate // Make sure we only interpolate with // one future frame for this bone lerpedBones[frame.BoneIndex] = true; // Calculate time difference between frames var frameLength = frame.Time - prevFrame.Time; var timeDiff = time - prevFrame.Time; var amount = timeDiff / frameLength; // Interpolation using Lerp on scale and translation, and Slerp on Rotation (Quaternion) Vector3 t1, t2; // Translation Quaternion q1, q2;// Rotation float s1, s2; // Scale // Decompose the previous key-frame's transform prevFrame.Transform.DecomposeUniformScale(out s1, out q1, out t1); // Decompose the current key-frame's transform frame.Transform.DecomposeUniformScale(out s2, out q2, out t2); // Perform interpolation and reconstitute matrix skinMatrices.Bones[frame.BoneIndex] = Matrix.Scaling(MathUtil.Lerp(s1, s2, amount)) * Matrix.RotationQuaternion(Quaternion.Slerp(q1, q2, amount)) * Matrix.Translation(Vector3.Lerp(t1, t2, amount)); } } } } // Apply parent bone transforms // We assume here that the first bone has no parent // and that each parent bone appears before children for (var i = 1; i < mesh.Bones.Count; i++) { var bone = mesh.Bones[i]; if (bone.ParentIndex > -1) { var parentTransform = skinMatrices.Bones[bone.ParentIndex]; skinMatrices.Bones[i] = (skinMatrices.Bones[i] * parentTransform); } } // Change the bone transform from rest pose space into bone space (using the inverse of the bind/rest pose) for (var i = 0; i < mesh.Bones.Count; i++) { skinMatrices.Bones[i] = Matrix.Transpose(mesh.Bones[i].InvBindPose * skinMatrices.Bones[i]); } // Check need to loop animation if (!PlayOnce && CurrentAnimation.HasValue && CurrentAnimation.Value.EndTime <= time) { this.Clock.Restart(); } } // Update the constant buffer with the skin matrices for each bone context.UpdateSubresource(skinMatrices.Bones, PerArmatureBuffer); // Draw sub-meshes grouped by material for (var mIndx = 0; mIndx < mesh.Materials.Count; mIndx++) { // Retrieve sub meshes for this material var subMeshesForMaterial = (from sm in mesh.SubMeshes where sm.MaterialIndex == mIndx select sm).ToArray(); // If the material buffer is available and there are submeshes // using the material update the PerMaterialBuffer if (PerMaterialBuffer != null && subMeshesForMaterial.Length > 0) { // update the PerMaterialBuffer constant buffer var material = new ConstantBuffers.PerMaterial() { Ambient = new Color4(mesh.Materials[mIndx].Ambient), Diffuse = new Color4(mesh.Materials[mIndx].Diffuse), Emissive = new Color4(mesh.Materials[mIndx].Emissive), Specular = new Color4(mesh.Materials[mIndx].Specular), SpecularPower = mesh.Materials[mIndx].SpecularPower, UVTransform = mesh.Materials[mIndx].UVTransform, }; int texIndxOffset = mIndx * Common.Mesh.MaxTextures; material.HasTexture = (uint)(textureViews[texIndxOffset] != null ? 1 : 0); // 0=false material.HasNormalMap = (uint)(EnableNormalMap && textureViews[texIndxOffset+1] != null ? 1 : 0); // 0=false // Bind textures to the pixel shader context.PixelShader.SetShaderResources(0, textureViews.GetRange(texIndxOffset, Common.Mesh.MaxTextures).ToArray()); // Set texture sampler state context.PixelShader.SetSampler(0, samplerState); // Update material buffer context.UpdateSubresource(ref material, PerMaterialBuffer); } // For each sub-mesh foreach (var subMesh in subMeshesForMaterial) { // Ensure the vertex buffer and index buffers are in range if (subMesh.VertexBufferIndex < vertexBuffers.Count && subMesh.IndexBufferIndex < indexBuffers.Count) { // Retrieve and set the vertex and index buffers var vertexBuffer = vertexBuffers[(int)subMesh.VertexBufferIndex]; context.InputAssembler.SetVertexBuffers(0, new VertexBufferBinding(vertexBuffer, Utilities.SizeOf<Vertex>(), 0)); context.InputAssembler.SetIndexBuffer(indexBuffers[(int)subMesh.IndexBufferIndex], Format.R16_UInt, 0); // Set topology context.InputAssembler.PrimitiveTopology = SharpDX.Direct3D.PrimitiveTopology.TriangleList; } // Draw the sub-mesh (includes Primitive count which we multiply by 3) // The submesh also includes a start index into the vertex buffer context.DrawIndexed((int)subMesh.PrimCount * 3, (int)subMesh.StartIndex, 0); } } // If there are no materials if (mesh.Materials.Count == 0) { foreach (var subMesh in mesh.SubMeshes) { // Ensure the vertex buffer and index buffers are in range if (subMesh.VertexBufferIndex < vertexBuffers.Count && subMesh.IndexBufferIndex < indexBuffers.Count) { // Retrieve and set the vertex and index buffers var vertexBuffer = vertexBuffers[(int)subMesh.VertexBufferIndex]; context.InputAssembler.SetVertexBuffers(0, new VertexBufferBinding(vertexBuffer, Utilities.SizeOf<Vertex>(), 0)); context.InputAssembler.SetIndexBuffer(indexBuffers[(int)subMesh.IndexBufferIndex], Format.R16_UInt, 0); // Set topology context.InputAssembler.PrimitiveTopology = SharpDX.Direct3D.PrimitiveTopology.TriangleList; } // Draw the sub-mesh (includes Primitive count which we multiply by 3) // The submesh also includes a start index into the vertex buffer context.DrawIndexed((int)subMesh.PrimCount * 3, (int)subMesh.StartIndex, 0); } } }