public Tensor categorical_crossentropy(Tensor target, Tensor output, bool from_logits = false) { // https://github.com/fchollet/keras/blob/f65a56fb65062c8d14d215c9f4b1015b97cc5bf3/keras/backend/cntk_backend.py#L1480 var _output = In(output); var _target = In(target); if (from_logits) { var result = C.CrossEntropyWithSoftmax(_output, _target); // cntk's result shape is (batch, 1), while keras expect (batch, ) CNTK.Function r = C.Reshape(result, NDShape.CreateNDShape(new int[] { })); return(Out(r)); } else { // scale preds so that the class probas of each sample sum to 1 var o = C.ElementDivide(_output.function, C.ReduceSum(_output, Axis.EndStaticAxis())); var eps = Constant.Scalar(epsilon(), DeviceDescriptor.CPUDevice); var omeps = Constant.Scalar(1.0 - epsilon(), DeviceDescriptor.CPUDevice); // avoid numerical instability with _EPSILON clipping o = C.Clip(o, eps, omeps); CNTK.Function r = C.Negate(C.ReduceSum(C.ElementTimes(_target, C.Log(_output)), Axis.EndStaticAxis())); return(Out(r)); } }
void create_network() { Console.WriteLine("Compute Device: " + computeDevice.AsString()); imageVariable = Util.inputVariable(new int[] { 28, 28, 1 }, "image_tensor"); categoricalVariable = Util.inputVariable(new int[] { 10 }, "label_tensor"); network = imageVariable; network = Layers.Convolution2D(network, 32, new int[] { 3, 3 }, computeDevice, CC.ReLU); network = CC.Pooling(network, C.PoolingType.Max, new int[] { 2, 2 }, new int[] { 2 }); network = Layers.Convolution2D(network, 64, new int[] { 3, 3 }, computeDevice, CC.ReLU); network = CC.Pooling(network, C.PoolingType.Max, new int[] { 2, 2 }, new int[] { 2 }); network = Layers.Convolution2D(network, 64, new int[] { 3, 3 }, computeDevice, CC.ReLU); network = Layers.Dense(network, 64, computeDevice, activation: CC.ReLU); network = Layers.Dense(network, 10, computeDevice); Logging.detailed_summary(network); Logging.log_number_of_parameters(network); loss_function = CC.CrossEntropyWithSoftmax(network, categoricalVariable); eval_function = CC.ClassificationError(network, categoricalVariable); learner = CC.AdamLearner( new C.ParameterVector(network.Parameters().ToArray()), new C.TrainingParameterScheduleDouble(0.001 * batch_size, (uint)batch_size), new C.TrainingParameterScheduleDouble(0.9), true, new C.TrainingParameterScheduleDouble(0.99)); trainer = CC.CreateTrainer(network, loss_function, eval_function, new C.LearnerVector(new C.Learner[] { learner })); evaluator = CC.CreateEvaluator(eval_function); }