public int Predict(ValueSet val, WriteToCMDLine write) { Stonk st = new Stonk(); StonkContext ctxt = new StonkContext(Datatype.AAPL); var comps = Comparison.GenerateComparisons(val); double[] Results = st.Forward(comps, ctxt); Results = Network.Forward(Results); return(Results.ToList().IndexOf(Results.Max())); }
public void Propogate (ValueSet val, WriteToCMDLine write) { Stonk stk = new Stonk(); StonkContext ctxt = new StonkContext(datatype); var vals = val.ReadValues(Datatypes.Datatype.AAPL, 24); NetworkMem AAPLMem = new NetworkMem(Network); NetworkMem StkMem = new NetworkMem(stk.Network); NetworkMem CtxtMem = new NetworkMem(ctxt.Network); double e = 0; Parallel.For(0, vals.Count(), j => { try { List <Comparison> comps = Comparison.GenerateComparisons(vals[j]); if (j == 0 || j == 1) { write("Comparisons : " + comps.Count()); } StonkMem sm = new StonkMem(comps.Count()); var MktOutput = stk.Forward(comps, ctxt, sm); var F = Network.Forward(MktOutput, dropout, write); var output = new double[2]; int opnumb = vals[j].Increase ? 1 : 0; output[opnumb] = 1; var Error = CategoricalCrossEntropy.Forward(F.Last().GetRank(0), output); e += Error.Max(); var D = Network.Backward(F, output, AAPLMem, write); stk.Backward(D, ctxt, sm, StkMem, CtxtMem); } catch { } }); write("Samples : " + vals.Count()); write("Loss : " + e); AAPLMem.Update(vals.Count(), 1e-4, Network); StkMem.Update(vals.Count(), 1e-4, stk.Network); CtxtMem.Update(vals.Count(), 1e-4, ctxt.Network); Network.Save(); stk.Network.Save(); ctxt.Save(); }