예제 #1
0
        static void Main(string[] args)
        {
            Console.WriteLine("\nBegin Build 2013 neural network demo");
            Console.WriteLine("\nData is the famous Iris flower set.");
            Console.WriteLine("Data is sepal length, sepal width, petal length, petal width -> iris species");
            Console.WriteLine("Iris setosa = 0 0 1, Iris versicolor = 0 1 0, Iris virginica = 1 0 0 ");
            Console.WriteLine("The goal is to predict species from sepal length, width, petal length, width\n");

            Console.WriteLine("Raw data resembles:\n");
            Console.WriteLine(" 5.1, 3.5, 1.4, 0.2, Iris setosa");
            Console.WriteLine(" 7.0, 3.2, 4.7, 1.4, Iris versicolor");
            Console.WriteLine(" 6.3, 3.3, 6.0, 2.5, Iris virginica");
            Console.WriteLine(" ......\n");

            double[][] allData = new double[150][];
            allData[0] = new double[] { 5.1, 3.5, 1.4, 0.2, 0, 0, 1 }; // sepal length, width, petal length, width
            allData[1] = new double[] { 4.9, 3.0, 1.4, 0.2, 0, 0, 1 }; // Iris setosa = 0 0 1
            allData[2] = new double[] { 4.7, 3.2, 1.3, 0.2, 0, 0, 1 }; // Iris versicolor = 0 1 0
            allData[3] = new double[] { 4.6, 3.1, 1.5, 0.2, 0, 0, 1 }; // Iris virginica = 1 0 0
            allData[4] = new double[] { 5.0, 3.6, 1.4, 0.2, 0, 0, 1 };
            allData[5] = new double[] { 5.4, 3.9, 1.7, 0.4, 0, 0, 1 };
            allData[6] = new double[] { 4.6, 3.4, 1.4, 0.3, 0, 0, 1 };
            allData[7] = new double[] { 5.0, 3.4, 1.5, 0.2, 0, 0, 1 };
            allData[8] = new double[] { 4.4, 2.9, 1.4, 0.2, 0, 0, 1 };
            allData[9] = new double[] { 4.9, 3.1, 1.5, 0.1, 0, 0, 1 };

            allData[10] = new double[] { 5.4, 3.7, 1.5, 0.2, 0, 0, 1 };
            allData[11] = new double[] { 4.8, 3.4, 1.6, 0.2, 0, 0, 1 };
            allData[12] = new double[] { 4.8, 3.0, 1.4, 0.1, 0, 0, 1 };
            allData[13] = new double[] { 4.3, 3.0, 1.1, 0.1, 0, 0, 1 };
            allData[14] = new double[] { 5.8, 4.0, 1.2, 0.2, 0, 0, 1 };
            allData[15] = new double[] { 5.7, 4.4, 1.5, 0.4, 0, 0, 1 };
            allData[16] = new double[] { 5.4, 3.9, 1.3, 0.4, 0, 0, 1 };
            allData[17] = new double[] { 5.1, 3.5, 1.4, 0.3, 0, 0, 1 };
            allData[18] = new double[] { 5.7, 3.8, 1.7, 0.3, 0, 0, 1 };
            allData[19] = new double[] { 5.1, 3.8, 1.5, 0.3, 0, 0, 1 };

            allData[20] = new double[] { 5.4, 3.4, 1.7, 0.2, 0, 0, 1 };
            allData[21] = new double[] { 5.1, 3.7, 1.5, 0.4, 0, 0, 1 };
            allData[22] = new double[] { 4.6, 3.6, 1.0, 0.2, 0, 0, 1 };
            allData[23] = new double[] { 5.1, 3.3, 1.7, 0.5, 0, 0, 1 };
            allData[24] = new double[] { 4.8, 3.4, 1.9, 0.2, 0, 0, 1 };
            allData[25] = new double[] { 5.0, 3.0, 1.6, 0.2, 0, 0, 1 };
            allData[26] = new double[] { 5.0, 3.4, 1.6, 0.4, 0, 0, 1 };
            allData[27] = new double[] { 5.2, 3.5, 1.5, 0.2, 0, 0, 1 };
            allData[28] = new double[] { 5.2, 3.4, 1.4, 0.2, 0, 0, 1 };
            allData[29] = new double[] { 4.7, 3.2, 1.6, 0.2, 0, 0, 1 };

            allData[30] = new double[] { 4.8, 3.1, 1.6, 0.2, 0, 0, 1 };
            allData[31] = new double[] { 5.4, 3.4, 1.5, 0.4, 0, 0, 1 };
            allData[32] = new double[] { 5.2, 4.1, 1.5, 0.1, 0, 0, 1 };
            allData[33] = new double[] { 5.5, 4.2, 1.4, 0.2, 0, 0, 1 };
            allData[34] = new double[] { 4.9, 3.1, 1.5, 0.1, 0, 0, 1 };
            allData[35] = new double[] { 5.0, 3.2, 1.2, 0.2, 0, 0, 1 };
            allData[36] = new double[] { 5.5, 3.5, 1.3, 0.2, 0, 0, 1 };
            allData[37] = new double[] { 4.9, 3.1, 1.5, 0.1, 0, 0, 1 };
            allData[38] = new double[] { 4.4, 3.0, 1.3, 0.2, 0, 0, 1 };
            allData[39] = new double[] { 5.1, 3.4, 1.5, 0.2, 0, 0, 1 };

            allData[40] = new double[] { 5.0, 3.5, 1.3, 0.3, 0, 0, 1 };
            allData[41] = new double[] { 4.5, 2.3, 1.3, 0.3, 0, 0, 1 };
            allData[42] = new double[] { 4.4, 3.2, 1.3, 0.2, 0, 0, 1 };
            allData[43] = new double[] { 5.0, 3.5, 1.6, 0.6, 0, 0, 1 };
            allData[44] = new double[] { 5.1, 3.8, 1.9, 0.4, 0, 0, 1 };
            allData[45] = new double[] { 4.8, 3.0, 1.4, 0.3, 0, 0, 1 };
            allData[46] = new double[] { 5.1, 3.8, 1.6, 0.2, 0, 0, 1 };
            allData[47] = new double[] { 4.6, 3.2, 1.4, 0.2, 0, 0, 1 };
            allData[48] = new double[] { 5.3, 3.7, 1.5, 0.2, 0, 0, 1 };
            allData[49] = new double[] { 5.0, 3.3, 1.4, 0.2, 0, 0, 1 };

            allData[50] = new double[] { 7.0, 3.2, 4.7, 1.4, 0, 1, 0 };
            allData[51] = new double[] { 6.4, 3.2, 4.5, 1.5, 0, 1, 0 };
            allData[52] = new double[] { 6.9, 3.1, 4.9, 1.5, 0, 1, 0 };
            allData[53] = new double[] { 5.5, 2.3, 4.0, 1.3, 0, 1, 0 };
            allData[54] = new double[] { 6.5, 2.8, 4.6, 1.5, 0, 1, 0 };
            allData[55] = new double[] { 5.7, 2.8, 4.5, 1.3, 0, 1, 0 };
            allData[56] = new double[] { 6.3, 3.3, 4.7, 1.6, 0, 1, 0 };
            allData[57] = new double[] { 4.9, 2.4, 3.3, 1.0, 0, 1, 0 };
            allData[58] = new double[] { 6.6, 2.9, 4.6, 1.3, 0, 1, 0 };
            allData[59] = new double[] { 5.2, 2.7, 3.9, 1.4, 0, 1, 0 };

            allData[60] = new double[] { 5.0, 2.0, 3.5, 1.0, 0, 1, 0 };
            allData[61] = new double[] { 5.9, 3.0, 4.2, 1.5, 0, 1, 0 };
            allData[62] = new double[] { 6.0, 2.2, 4.0, 1.0, 0, 1, 0 };
            allData[63] = new double[] { 6.1, 2.9, 4.7, 1.4, 0, 1, 0 };
            allData[64] = new double[] { 5.6, 2.9, 3.6, 1.3, 0, 1, 0 };
            allData[65] = new double[] { 6.7, 3.1, 4.4, 1.4, 0, 1, 0 };
            allData[66] = new double[] { 5.6, 3.0, 4.5, 1.5, 0, 1, 0 };
            allData[67] = new double[] { 5.8, 2.7, 4.1, 1.0, 0, 1, 0 };
            allData[68] = new double[] { 6.2, 2.2, 4.5, 1.5, 0, 1, 0 };
            allData[69] = new double[] { 5.6, 2.5, 3.9, 1.1, 0, 1, 0 };

            allData[70] = new double[] { 5.9, 3.2, 4.8, 1.8, 0, 1, 0 };
            allData[71] = new double[] { 6.1, 2.8, 4.0, 1.3, 0, 1, 0 };
            allData[72] = new double[] { 6.3, 2.5, 4.9, 1.5, 0, 1, 0 };
            allData[73] = new double[] { 6.1, 2.8, 4.7, 1.2, 0, 1, 0 };
            allData[74] = new double[] { 6.4, 2.9, 4.3, 1.3, 0, 1, 0 };
            allData[75] = new double[] { 6.6, 3.0, 4.4, 1.4, 0, 1, 0 };
            allData[76] = new double[] { 6.8, 2.8, 4.8, 1.4, 0, 1, 0 };
            allData[77] = new double[] { 6.7, 3.0, 5.0, 1.7, 0, 1, 0 };
            allData[78] = new double[] { 6.0, 2.9, 4.5, 1.5, 0, 1, 0 };
            allData[79] = new double[] { 5.7, 2.6, 3.5, 1.0, 0, 1, 0 };

            allData[80] = new double[] { 5.5, 2.4, 3.8, 1.1, 0, 1, 0 };
            allData[81] = new double[] { 5.5, 2.4, 3.7, 1.0, 0, 1, 0 };
            allData[82] = new double[] { 5.8, 2.7, 3.9, 1.2, 0, 1, 0 };
            allData[83] = new double[] { 6.0, 2.7, 5.1, 1.6, 0, 1, 0 };
            allData[84] = new double[] { 5.4, 3.0, 4.5, 1.5, 0, 1, 0 };
            allData[85] = new double[] { 6.0, 3.4, 4.5, 1.6, 0, 1, 0 };
            allData[86] = new double[] { 6.7, 3.1, 4.7, 1.5, 0, 1, 0 };
            allData[87] = new double[] { 6.3, 2.3, 4.4, 1.3, 0, 1, 0 };
            allData[88] = new double[] { 5.6, 3.0, 4.1, 1.3, 0, 1, 0 };
            allData[89] = new double[] { 5.5, 2.5, 4.0, 1.3, 0, 1, 0 };

            allData[90] = new double[] { 5.5, 2.6, 4.4, 1.2, 0, 1, 0 };
            allData[91] = new double[] { 6.1, 3.0, 4.6, 1.4, 0, 1, 0 };
            allData[92] = new double[] { 5.8, 2.6, 4.0, 1.2, 0, 1, 0 };
            allData[93] = new double[] { 5.0, 2.3, 3.3, 1.0, 0, 1, 0 };
            allData[94] = new double[] { 5.6, 2.7, 4.2, 1.3, 0, 1, 0 };
            allData[95] = new double[] { 5.7, 3.0, 4.2, 1.2, 0, 1, 0 };
            allData[96] = new double[] { 5.7, 2.9, 4.2, 1.3, 0, 1, 0 };
            allData[97] = new double[] { 6.2, 2.9, 4.3, 1.3, 0, 1, 0 };
            allData[98] = new double[] { 5.1, 2.5, 3.0, 1.1, 0, 1, 0 };
            allData[99] = new double[] { 5.7, 2.8, 4.1, 1.3, 0, 1, 0 };

            allData[100] = new double[] { 6.3, 3.3, 6.0, 2.5, 1, 0, 0 };
            allData[101] = new double[] { 5.8, 2.7, 5.1, 1.9, 1, 0, 0 };
            allData[102] = new double[] { 7.1, 3.0, 5.9, 2.1, 1, 0, 0 };
            allData[103] = new double[] { 6.3, 2.9, 5.6, 1.8, 1, 0, 0 };
            allData[104] = new double[] { 6.5, 3.0, 5.8, 2.2, 1, 0, 0 };
            allData[105] = new double[] { 7.6, 3.0, 6.6, 2.1, 1, 0, 0 };
            allData[106] = new double[] { 4.9, 2.5, 4.5, 1.7, 1, 0, 0 };
            allData[107] = new double[] { 7.3, 2.9, 6.3, 1.8, 1, 0, 0 };
            allData[108] = new double[] { 6.7, 2.5, 5.8, 1.8, 1, 0, 0 };
            allData[109] = new double[] { 7.2, 3.6, 6.1, 2.5, 1, 0, 0 };

            allData[110] = new double[] { 6.5, 3.2, 5.1, 2.0, 1, 0, 0 };
            allData[111] = new double[] { 6.4, 2.7, 5.3, 1.9, 1, 0, 0 };
            allData[112] = new double[] { 6.8, 3.0, 5.5, 2.1, 1, 0, 0 };
            allData[113] = new double[] { 5.7, 2.5, 5.0, 2.0, 1, 0, 0 };
            allData[114] = new double[] { 5.8, 2.8, 5.1, 2.4, 1, 0, 0 };
            allData[115] = new double[] { 6.4, 3.2, 5.3, 2.3, 1, 0, 0 };
            allData[116] = new double[] { 6.5, 3.0, 5.5, 1.8, 1, 0, 0 };
            allData[117] = new double[] { 7.7, 3.8, 6.7, 2.2, 1, 0, 0 };
            allData[118] = new double[] { 7.7, 2.6, 6.9, 2.3, 1, 0, 0 };
            allData[119] = new double[] { 6.0, 2.2, 5.0, 1.5, 1, 0, 0 };

            allData[120] = new double[] { 6.9, 3.2, 5.7, 2.3, 1, 0, 0 };
            allData[121] = new double[] { 5.6, 2.8, 4.9, 2.0, 1, 0, 0 };
            allData[122] = new double[] { 7.7, 2.8, 6.7, 2.0, 1, 0, 0 };
            allData[123] = new double[] { 6.3, 2.7, 4.9, 1.8, 1, 0, 0 };
            allData[124] = new double[] { 6.7, 3.3, 5.7, 2.1, 1, 0, 0 };
            allData[125] = new double[] { 7.2, 3.2, 6.0, 1.8, 1, 0, 0 };
            allData[126] = new double[] { 6.2, 2.8, 4.8, 1.8, 1, 0, 0 };
            allData[127] = new double[] { 6.1, 3.0, 4.9, 1.8, 1, 0, 0 };
            allData[128] = new double[] { 6.4, 2.8, 5.6, 2.1, 1, 0, 0 };
            allData[129] = new double[] { 7.2, 3.0, 5.8, 1.6, 1, 0, 0 };

            allData[130] = new double[] { 7.4, 2.8, 6.1, 1.9, 1, 0, 0 };
            allData[131] = new double[] { 7.9, 3.8, 6.4, 2.0, 1, 0, 0 };
            allData[132] = new double[] { 6.4, 2.8, 5.6, 2.2, 1, 0, 0 };
            allData[133] = new double[] { 6.3, 2.8, 5.1, 1.5, 1, 0, 0 };
            allData[134] = new double[] { 6.1, 2.6, 5.6, 1.4, 1, 0, 0 };
            allData[135] = new double[] { 7.7, 3.0, 6.1, 2.3, 1, 0, 0 };
            allData[136] = new double[] { 6.3, 3.4, 5.6, 2.4, 1, 0, 0 };
            allData[137] = new double[] { 6.4, 3.1, 5.5, 1.8, 1, 0, 0 };
            allData[138] = new double[] { 6.0, 3.0, 4.8, 1.8, 1, 0, 0 };
            allData[139] = new double[] { 6.9, 3.1, 5.4, 2.1, 1, 0, 0 };

            allData[140] = new double[] { 6.7, 3.1, 5.6, 2.4, 1, 0, 0 };
            allData[141] = new double[] { 6.9, 3.1, 5.1, 2.3, 1, 0, 0 };
            allData[142] = new double[] { 5.8, 2.7, 5.1, 1.9, 1, 0, 0 };
            allData[143] = new double[] { 6.8, 3.2, 5.9, 2.3, 1, 0, 0 };
            allData[144] = new double[] { 6.7, 3.3, 5.7, 2.5, 1, 0, 0 };
            allData[145] = new double[] { 6.7, 3.0, 5.2, 2.3, 1, 0, 0 };
            allData[146] = new double[] { 6.3, 2.5, 5.0, 1.9, 1, 0, 0 };
            allData[147] = new double[] { 6.5, 3.0, 5.2, 2.0, 1, 0, 0 };
            allData[148] = new double[] { 6.2, 3.4, 5.4, 2.3, 1, 0, 0 };
            allData[149] = new double[] { 5.9, 3.0, 5.1, 1.8, 1, 0, 0 };

            Console.WriteLine("\nFirst 6 rows of entire 150-item data set:");
            ShowMatrix(allData, 6, 1, true);

            Console.WriteLine("Creating 80% training and 20% test data matrices");
            double[][] trainData = null;
            double[][] testData = null;
            MakeTrainTest(allData, out trainData, out testData);

            Console.WriteLine("\nFirst 5 rows of training data:");
            ShowMatrix(trainData, 5, 1, true);
            Console.WriteLine("First 3 rows of test data:");
            ShowMatrix(testData, 3, 1, true);

            Normalize(trainData, new int[] { 0, 1, 2, 3 });
            Normalize(testData, new int[] { 0, 1, 2, 3 });

            Console.WriteLine("\nFirst 5 rows of normalized training data:");
            ShowMatrix(trainData, 5, 1, true);
            Console.WriteLine("First 3 rows of normalized test data:");
            ShowMatrix(testData, 3, 1, true);

            Console.WriteLine("\nCreating a 4-input, 7-hidden, 3-output neural network");
            Console.Write("Hard-coded tanh function for input-to-hidden and softmax for ");
            Console.WriteLine("hidden-to-output activations");
            const int numInput = 4;
            const int numHidden = 7;
            const int numOutput = 3;


            NeuralNetwork nn = new NeuralNetwork(numInput, numHidden, numOutput);

            Console.WriteLine("\nInitializing weights and bias to small random values");
            nn.InitializeWeights();

            int maxEpochs = 2000;
            double learnRate = 0.05;
            double momentum = 0.01;
            double weightDecay = 0.0001;
            Console.WriteLine("Setting maxEpochs = 2000, learnRate = 0.05, momentum = 0.01, weightDecay = 0.0001");
            Console.WriteLine("Training has hard-coded mean squared error < 0.020 stopping condition");

            Console.WriteLine("\nBeginning training using incremental back-propagation\n");
            nn.Train(trainData, maxEpochs, learnRate, momentum, weightDecay);
            Console.WriteLine("Training complete");

            double[] weights = nn.GetWeights();
            Console.WriteLine("Final neural network weights and bias values:");
            ShowVector(weights, 10, 3, true);

            double trainAcc = nn.Accuracy(trainData);
            Console.WriteLine("\nAccuracy on training data = " + trainAcc.ToString("F4"));

            double testAcc = nn.Accuracy(testData);
            Console.WriteLine("\nAccuracy on test data = " + testAcc.ToString("F4"));

            Console.WriteLine("\nEnd Build 2013 neural network demo\n");
            Console.ReadLine();

        } // Main
예제 #2
0
        static void Main(string[] args)
        {
            Console.WriteLine("\nBegin Build 2013 neural network demo");
            Console.WriteLine("\nData is the famous Iris flower set.");
            Console.WriteLine("Data is sepal length, sepal width, petal length, petal width -> iris species");
            Console.WriteLine("Iris setosa = 0 0 1, Iris versicolor = 0 1 0, Iris virginica = 1 0 0 ");
            Console.WriteLine("The goal is to predict species from sepal length, width, petal length, width\n");

            Console.WriteLine("Raw data resembles:\n");
            Console.WriteLine(" 5.1, 3.5, 1.4, 0.2, Iris setosa");
            Console.WriteLine(" 7.0, 3.2, 4.7, 1.4, Iris versicolor");
            Console.WriteLine(" 6.3, 3.3, 6.0, 2.5, Iris virginica");
            Console.WriteLine(" ......\n");

            double[][] allData = new double[150][];
            allData[0] = new double[] { 5.1, 3.5, 1.4, 0.2, 0, 0, 1 }; // sepal length, width, petal length, width
            allData[1] = new double[] { 4.9, 3.0, 1.4, 0.2, 0, 0, 1 }; // Iris setosa = 0 0 1
            allData[2] = new double[] { 4.7, 3.2, 1.3, 0.2, 0, 0, 1 }; // Iris versicolor = 0 1 0
            allData[3] = new double[] { 4.6, 3.1, 1.5, 0.2, 0, 0, 1 }; // Iris virginica = 1 0 0
            allData[4] = new double[] { 5.0, 3.6, 1.4, 0.2, 0, 0, 1 };
            allData[5] = new double[] { 5.4, 3.9, 1.7, 0.4, 0, 0, 1 };
            allData[6] = new double[] { 4.6, 3.4, 1.4, 0.3, 0, 0, 1 };
            allData[7] = new double[] { 5.0, 3.4, 1.5, 0.2, 0, 0, 1 };
            allData[8] = new double[] { 4.4, 2.9, 1.4, 0.2, 0, 0, 1 };
            allData[9] = new double[] { 4.9, 3.1, 1.5, 0.1, 0, 0, 1 };

            allData[10] = new double[] { 5.4, 3.7, 1.5, 0.2, 0, 0, 1 };
            allData[11] = new double[] { 4.8, 3.4, 1.6, 0.2, 0, 0, 1 };
            allData[12] = new double[] { 4.8, 3.0, 1.4, 0.1, 0, 0, 1 };
            allData[13] = new double[] { 4.3, 3.0, 1.1, 0.1, 0, 0, 1 };
            allData[14] = new double[] { 5.8, 4.0, 1.2, 0.2, 0, 0, 1 };
            allData[15] = new double[] { 5.7, 4.4, 1.5, 0.4, 0, 0, 1 };
            allData[16] = new double[] { 5.4, 3.9, 1.3, 0.4, 0, 0, 1 };
            allData[17] = new double[] { 5.1, 3.5, 1.4, 0.3, 0, 0, 1 };
            allData[18] = new double[] { 5.7, 3.8, 1.7, 0.3, 0, 0, 1 };
            allData[19] = new double[] { 5.1, 3.8, 1.5, 0.3, 0, 0, 1 };

            allData[20] = new double[] { 5.4, 3.4, 1.7, 0.2, 0, 0, 1 };
            allData[21] = new double[] { 5.1, 3.7, 1.5, 0.4, 0, 0, 1 };
            allData[22] = new double[] { 4.6, 3.6, 1.0, 0.2, 0, 0, 1 };
            allData[23] = new double[] { 5.1, 3.3, 1.7, 0.5, 0, 0, 1 };
            allData[24] = new double[] { 4.8, 3.4, 1.9, 0.2, 0, 0, 1 };
            allData[25] = new double[] { 5.0, 3.0, 1.6, 0.2, 0, 0, 1 };
            allData[26] = new double[] { 5.0, 3.4, 1.6, 0.4, 0, 0, 1 };
            allData[27] = new double[] { 5.2, 3.5, 1.5, 0.2, 0, 0, 1 };
            allData[28] = new double[] { 5.2, 3.4, 1.4, 0.2, 0, 0, 1 };
            allData[29] = new double[] { 4.7, 3.2, 1.6, 0.2, 0, 0, 1 };

            allData[30] = new double[] { 4.8, 3.1, 1.6, 0.2, 0, 0, 1 };
            allData[31] = new double[] { 5.4, 3.4, 1.5, 0.4, 0, 0, 1 };
            allData[32] = new double[] { 5.2, 4.1, 1.5, 0.1, 0, 0, 1 };
            allData[33] = new double[] { 5.5, 4.2, 1.4, 0.2, 0, 0, 1 };
            allData[34] = new double[] { 4.9, 3.1, 1.5, 0.1, 0, 0, 1 };
            allData[35] = new double[] { 5.0, 3.2, 1.2, 0.2, 0, 0, 1 };
            allData[36] = new double[] { 5.5, 3.5, 1.3, 0.2, 0, 0, 1 };
            allData[37] = new double[] { 4.9, 3.1, 1.5, 0.1, 0, 0, 1 };
            allData[38] = new double[] { 4.4, 3.0, 1.3, 0.2, 0, 0, 1 };
            allData[39] = new double[] { 5.1, 3.4, 1.5, 0.2, 0, 0, 1 };

            allData[40] = new double[] { 5.0, 3.5, 1.3, 0.3, 0, 0, 1 };
            allData[41] = new double[] { 4.5, 2.3, 1.3, 0.3, 0, 0, 1 };
            allData[42] = new double[] { 4.4, 3.2, 1.3, 0.2, 0, 0, 1 };
            allData[43] = new double[] { 5.0, 3.5, 1.6, 0.6, 0, 0, 1 };
            allData[44] = new double[] { 5.1, 3.8, 1.9, 0.4, 0, 0, 1 };
            allData[45] = new double[] { 4.8, 3.0, 1.4, 0.3, 0, 0, 1 };
            allData[46] = new double[] { 5.1, 3.8, 1.6, 0.2, 0, 0, 1 };
            allData[47] = new double[] { 4.6, 3.2, 1.4, 0.2, 0, 0, 1 };
            allData[48] = new double[] { 5.3, 3.7, 1.5, 0.2, 0, 0, 1 };
            allData[49] = new double[] { 5.0, 3.3, 1.4, 0.2, 0, 0, 1 };

            allData[50] = new double[] { 7.0, 3.2, 4.7, 1.4, 0, 1, 0 };
            allData[51] = new double[] { 6.4, 3.2, 4.5, 1.5, 0, 1, 0 };
            allData[52] = new double[] { 6.9, 3.1, 4.9, 1.5, 0, 1, 0 };
            allData[53] = new double[] { 5.5, 2.3, 4.0, 1.3, 0, 1, 0 };
            allData[54] = new double[] { 6.5, 2.8, 4.6, 1.5, 0, 1, 0 };
            allData[55] = new double[] { 5.7, 2.8, 4.5, 1.3, 0, 1, 0 };
            allData[56] = new double[] { 6.3, 3.3, 4.7, 1.6, 0, 1, 0 };
            allData[57] = new double[] { 4.9, 2.4, 3.3, 1.0, 0, 1, 0 };
            allData[58] = new double[] { 6.6, 2.9, 4.6, 1.3, 0, 1, 0 };
            allData[59] = new double[] { 5.2, 2.7, 3.9, 1.4, 0, 1, 0 };

            allData[60] = new double[] { 5.0, 2.0, 3.5, 1.0, 0, 1, 0 };
            allData[61] = new double[] { 5.9, 3.0, 4.2, 1.5, 0, 1, 0 };
            allData[62] = new double[] { 6.0, 2.2, 4.0, 1.0, 0, 1, 0 };
            allData[63] = new double[] { 6.1, 2.9, 4.7, 1.4, 0, 1, 0 };
            allData[64] = new double[] { 5.6, 2.9, 3.6, 1.3, 0, 1, 0 };
            allData[65] = new double[] { 6.7, 3.1, 4.4, 1.4, 0, 1, 0 };
            allData[66] = new double[] { 5.6, 3.0, 4.5, 1.5, 0, 1, 0 };
            allData[67] = new double[] { 5.8, 2.7, 4.1, 1.0, 0, 1, 0 };
            allData[68] = new double[] { 6.2, 2.2, 4.5, 1.5, 0, 1, 0 };
            allData[69] = new double[] { 5.6, 2.5, 3.9, 1.1, 0, 1, 0 };

            allData[70] = new double[] { 5.9, 3.2, 4.8, 1.8, 0, 1, 0 };
            allData[71] = new double[] { 6.1, 2.8, 4.0, 1.3, 0, 1, 0 };
            allData[72] = new double[] { 6.3, 2.5, 4.9, 1.5, 0, 1, 0 };
            allData[73] = new double[] { 6.1, 2.8, 4.7, 1.2, 0, 1, 0 };
            allData[74] = new double[] { 6.4, 2.9, 4.3, 1.3, 0, 1, 0 };
            allData[75] = new double[] { 6.6, 3.0, 4.4, 1.4, 0, 1, 0 };
            allData[76] = new double[] { 6.8, 2.8, 4.8, 1.4, 0, 1, 0 };
            allData[77] = new double[] { 6.7, 3.0, 5.0, 1.7, 0, 1, 0 };
            allData[78] = new double[] { 6.0, 2.9, 4.5, 1.5, 0, 1, 0 };
            allData[79] = new double[] { 5.7, 2.6, 3.5, 1.0, 0, 1, 0 };

            allData[80] = new double[] { 5.5, 2.4, 3.8, 1.1, 0, 1, 0 };
            allData[81] = new double[] { 5.5, 2.4, 3.7, 1.0, 0, 1, 0 };
            allData[82] = new double[] { 5.8, 2.7, 3.9, 1.2, 0, 1, 0 };
            allData[83] = new double[] { 6.0, 2.7, 5.1, 1.6, 0, 1, 0 };
            allData[84] = new double[] { 5.4, 3.0, 4.5, 1.5, 0, 1, 0 };
            allData[85] = new double[] { 6.0, 3.4, 4.5, 1.6, 0, 1, 0 };
            allData[86] = new double[] { 6.7, 3.1, 4.7, 1.5, 0, 1, 0 };
            allData[87] = new double[] { 6.3, 2.3, 4.4, 1.3, 0, 1, 0 };
            allData[88] = new double[] { 5.6, 3.0, 4.1, 1.3, 0, 1, 0 };
            allData[89] = new double[] { 5.5, 2.5, 4.0, 1.3, 0, 1, 0 };

            allData[90] = new double[] { 5.5, 2.6, 4.4, 1.2, 0, 1, 0 };
            allData[91] = new double[] { 6.1, 3.0, 4.6, 1.4, 0, 1, 0 };
            allData[92] = new double[] { 5.8, 2.6, 4.0, 1.2, 0, 1, 0 };
            allData[93] = new double[] { 5.0, 2.3, 3.3, 1.0, 0, 1, 0 };
            allData[94] = new double[] { 5.6, 2.7, 4.2, 1.3, 0, 1, 0 };
            allData[95] = new double[] { 5.7, 3.0, 4.2, 1.2, 0, 1, 0 };
            allData[96] = new double[] { 5.7, 2.9, 4.2, 1.3, 0, 1, 0 };
            allData[97] = new double[] { 6.2, 2.9, 4.3, 1.3, 0, 1, 0 };
            allData[98] = new double[] { 5.1, 2.5, 3.0, 1.1, 0, 1, 0 };
            allData[99] = new double[] { 5.7, 2.8, 4.1, 1.3, 0, 1, 0 };

            allData[100] = new double[] { 6.3, 3.3, 6.0, 2.5, 1, 0, 0 };
            allData[101] = new double[] { 5.8, 2.7, 5.1, 1.9, 1, 0, 0 };
            allData[102] = new double[] { 7.1, 3.0, 5.9, 2.1, 1, 0, 0 };
            allData[103] = new double[] { 6.3, 2.9, 5.6, 1.8, 1, 0, 0 };
            allData[104] = new double[] { 6.5, 3.0, 5.8, 2.2, 1, 0, 0 };
            allData[105] = new double[] { 7.6, 3.0, 6.6, 2.1, 1, 0, 0 };
            allData[106] = new double[] { 4.9, 2.5, 4.5, 1.7, 1, 0, 0 };
            allData[107] = new double[] { 7.3, 2.9, 6.3, 1.8, 1, 0, 0 };
            allData[108] = new double[] { 6.7, 2.5, 5.8, 1.8, 1, 0, 0 };
            allData[109] = new double[] { 7.2, 3.6, 6.1, 2.5, 1, 0, 0 };

            allData[110] = new double[] { 6.5, 3.2, 5.1, 2.0, 1, 0, 0 };
            allData[111] = new double[] { 6.4, 2.7, 5.3, 1.9, 1, 0, 0 };
            allData[112] = new double[] { 6.8, 3.0, 5.5, 2.1, 1, 0, 0 };
            allData[113] = new double[] { 5.7, 2.5, 5.0, 2.0, 1, 0, 0 };
            allData[114] = new double[] { 5.8, 2.8, 5.1, 2.4, 1, 0, 0 };
            allData[115] = new double[] { 6.4, 3.2, 5.3, 2.3, 1, 0, 0 };
            allData[116] = new double[] { 6.5, 3.0, 5.5, 1.8, 1, 0, 0 };
            allData[117] = new double[] { 7.7, 3.8, 6.7, 2.2, 1, 0, 0 };
            allData[118] = new double[] { 7.7, 2.6, 6.9, 2.3, 1, 0, 0 };
            allData[119] = new double[] { 6.0, 2.2, 5.0, 1.5, 1, 0, 0 };

            allData[120] = new double[] { 6.9, 3.2, 5.7, 2.3, 1, 0, 0 };
            allData[121] = new double[] { 5.6, 2.8, 4.9, 2.0, 1, 0, 0 };
            allData[122] = new double[] { 7.7, 2.8, 6.7, 2.0, 1, 0, 0 };
            allData[123] = new double[] { 6.3, 2.7, 4.9, 1.8, 1, 0, 0 };
            allData[124] = new double[] { 6.7, 3.3, 5.7, 2.1, 1, 0, 0 };
            allData[125] = new double[] { 7.2, 3.2, 6.0, 1.8, 1, 0, 0 };
            allData[126] = new double[] { 6.2, 2.8, 4.8, 1.8, 1, 0, 0 };
            allData[127] = new double[] { 6.1, 3.0, 4.9, 1.8, 1, 0, 0 };
            allData[128] = new double[] { 6.4, 2.8, 5.6, 2.1, 1, 0, 0 };
            allData[129] = new double[] { 7.2, 3.0, 5.8, 1.6, 1, 0, 0 };

            allData[130] = new double[] { 7.4, 2.8, 6.1, 1.9, 1, 0, 0 };
            allData[131] = new double[] { 7.9, 3.8, 6.4, 2.0, 1, 0, 0 };
            allData[132] = new double[] { 6.4, 2.8, 5.6, 2.2, 1, 0, 0 };
            allData[133] = new double[] { 6.3, 2.8, 5.1, 1.5, 1, 0, 0 };
            allData[134] = new double[] { 6.1, 2.6, 5.6, 1.4, 1, 0, 0 };
            allData[135] = new double[] { 7.7, 3.0, 6.1, 2.3, 1, 0, 0 };
            allData[136] = new double[] { 6.3, 3.4, 5.6, 2.4, 1, 0, 0 };
            allData[137] = new double[] { 6.4, 3.1, 5.5, 1.8, 1, 0, 0 };
            allData[138] = new double[] { 6.0, 3.0, 4.8, 1.8, 1, 0, 0 };
            allData[139] = new double[] { 6.9, 3.1, 5.4, 2.1, 1, 0, 0 };

            allData[140] = new double[] { 6.7, 3.1, 5.6, 2.4, 1, 0, 0 };
            allData[141] = new double[] { 6.9, 3.1, 5.1, 2.3, 1, 0, 0 };
            allData[142] = new double[] { 5.8, 2.7, 5.1, 1.9, 1, 0, 0 };
            allData[143] = new double[] { 6.8, 3.2, 5.9, 2.3, 1, 0, 0 };
            allData[144] = new double[] { 6.7, 3.3, 5.7, 2.5, 1, 0, 0 };
            allData[145] = new double[] { 6.7, 3.0, 5.2, 2.3, 1, 0, 0 };
            allData[146] = new double[] { 6.3, 2.5, 5.0, 1.9, 1, 0, 0 };
            allData[147] = new double[] { 6.5, 3.0, 5.2, 2.0, 1, 0, 0 };
            allData[148] = new double[] { 6.2, 3.4, 5.4, 2.3, 1, 0, 0 };
            allData[149] = new double[] { 5.9, 3.0, 5.1, 1.8, 1, 0, 0 };

            Console.WriteLine("\nFirst 6 rows of entire 150-item data set:");
            ShowMatrix(allData, 6, 1, true);

            Console.WriteLine("Creating 80% training and 20% test data matrices");
            double[][] trainData = null;
            double[][] testData = null;
            MakeTrainTest(allData, out trainData, out testData);

            Console.WriteLine("\nFirst 5 rows of training data:");
            ShowMatrix(trainData, 5, 1, true);
            Console.WriteLine("First 3 rows of test data:");
            ShowMatrix(testData, 3, 1, true);

            Normalize(trainData, new int[] { 0, 1, 2, 3 });
            Normalize(testData, new int[] { 0, 1, 2, 3 });

            Console.WriteLine("\nFirst 5 rows of normalized training data:");
            ShowMatrix(trainData, 5, 1, true);
            Console.WriteLine("First 3 rows of normalized test data:");
            ShowMatrix(testData, 3, 1, true);

            Console.WriteLine("\nCreating a 4-input, 7-hidden, 3-output neural network");
            Console.Write("Hard-coded tanh function for input-to-hidden and softmax for ");
            Console.WriteLine("hidden-to-output activations");
            const int numInput = 4;
            const int numHidden = 7;
            const int numOutput = 3;
            NeuralNetwork nn = new NeuralNetwork(numInput, numHidden, numOutput);

            Console.WriteLine("\nInitializing weights and bias to small random values");
            nn.InitializeWeights();

            int maxEpochs = 2000;
            double learnRate = 0.05;
            double momentum = 0.01;
            double weightDecay = 0.0001;
            Console.WriteLine("Setting maxEpochs = 2000, learnRate = 0.05, momentum = 0.01, weightDecay = 0.0001");
            Console.WriteLine("Training has hard-coded mean squared error < 0.020 stopping condition");

            Console.WriteLine("\nBeginning training using incremental back-propagation\n");
            nn.Train(trainData, maxEpochs, learnRate, momentum, weightDecay);
            Console.WriteLine("Training complete");

            double[] weights = nn.GetWeights();
            Console.WriteLine("Final neural network weights and bias values:");
            ShowVector(weights, 10, 3, true);

            double trainAcc = nn.Accuracy(trainData);
            Console.WriteLine("\nAccuracy on training data = " + trainAcc.ToString("F4"));

            double testAcc = nn.Accuracy(testData);
            Console.WriteLine("\nAccuracy on test data = " + testAcc.ToString("F4"));

            Console.WriteLine("\nEnd Build 2013 neural network demo\n");
            Console.ReadLine();
        }
예제 #3
0
        static void Main(string[] args)
        {
            Console.WriteLine("\nBegin Build 2017 neural network demo");
            Console.WriteLine("\nData is cubic function set with three variables.");
            Console.WriteLine("Data is x, y, z -> result");            
            Console.WriteLine("The goal is to predict result from x, y, z\n");

            Console.WriteLine("Raw data resembles:\n");
            Console.WriteLine(" 0, 0, 0, 16");
            Console.WriteLine(" 0, 0, 1, 15");
            Console.WriteLine(" 0, 1, 0, 16");
            Console.WriteLine(" ......\n");

            double[][] allData = FunzioneCubica.SetInputOutput().Select(r => new double [4] {r.argx, r.argy, r.argz, r.risultato}).ToArray();
            
            Console.WriteLine("\nFirst 6 rows of entire 150-item data set:");
            ShowMatrix(allData, 6, 1, true);

            Console.WriteLine("Creating 80% training and 20% test data matrices");
            double[][] trainData = null;
            double[][] testData = null;
            MakeTrainTest(allData, out trainData, out testData);

            Console.WriteLine("\nFirst 5 rows of training data:");
            ShowMatrix(trainData, 5, 1, true);
            Console.WriteLine("First 3 rows of test data:");
            ShowMatrix(testData, 3, 1, true);

            Normalize(trainData, new int[] { 0, 1, 2, 3 });
            Normalize(testData, new int[] { 0, 1, 2, 3 });

            Console.WriteLine("\nFirst 5 rows of normalized training data:");
            ShowMatrix(trainData, 5, 1, true);
            Console.WriteLine("First 3 rows of normalized test data:");
            ShowMatrix(testData, 3, 1, true);

            Console.WriteLine("\nCreating a 4-input, 7-hidden, 3-output neural network");
            Console.Write("Hard-coded tanh function for input-to-hidden and softmax for ");
            Console.WriteLine("hidden-to-output activations");
            const int numInput = 3;
            const int numHidden = 7;
            const int numOutput = 1;
            NeuralNetwork nn = new NeuralNetwork(numInput, numHidden, numOutput);

            Console.WriteLine("\nInitializing weights and bias to small random values");
            nn.InitializeWeights();

            int maxEpochs = 2000;
            double learnRate = 0.05;
            double momentum = 0.01;
            double weightDecay = 0.0001;
            Console.WriteLine("Setting maxEpochs = 2000, learnRate = 0.05, momentum = 0.01, weightDecay = 0.0001");
            Console.WriteLine("Training has hard-coded mean squared error < 0.020 stopping condition");

            Console.WriteLine("\nBeginning training using incremental back-propagation\n");
            nn.Train(trainData, maxEpochs, learnRate, momentum, weightDecay);
            Console.WriteLine("Training complete");

            double[] weights = nn.GetWeights();
            Console.WriteLine("Final neural network weights and bias values:");
            ShowVector(weights, 10, 3, true);

            double trainAcc = nn.Accuracy(trainData);
            Console.WriteLine("\nAccuracy on training data = " + trainAcc.ToString("F4"));

            double testAcc = nn.Accuracy(testData);
            Console.WriteLine("\nAccuracy on test data = " + testAcc.ToString("F4"));

            Console.WriteLine("\nEnd Build 2013 neural network demo\n");
            Console.ReadLine();

        } // Main
예제 #4
0
        //        Save Player XML fil
        // Get the data from the XML-File

        /*
         * public DataType GetDataType()
         *      {
         *          System.Xml.Serialization.XmlSerializer reader = new System.Xml.Serialization.XmlSerializer(typeof(DataType));
         *
         *          var path = "../../save.xml";
         *
         *          System.IO.StreamReader file = new System.IO.StreamReader(path);
         *
         *          DataType data = (DataType)reader.Deserialize(file);
         *
         *          file.Close();
         *
         *          return data;
         *      }
         *
         */
        /*
         * 1. Age of patient at time of operation (numerical)
         * 2. Patient's year of operation (year - 1900, numerical)
         * 3. Number of positive axillary nodes detected (numerical)
         * 4. Survival status (class attribute)
         * -- 1 = the patient survived 5 years or longer
         * -- 2 = the patient died within 5 year
         */


        // 1 0 = alive
        // 0 1 = død
        //36,69,0,1
        static void Main(string[] args)
        {
            double[][] allData = new double[306][];
            string     line;

            string[] numbers;
            int      counter = 0;

            // Read the file and display it line by line.
            System.IO.StreamReader file = new System.IO.StreamReader("../../TestData.txt");
            while ((line = file.ReadLine()) != null)
            {
                numbers = line.Split(',');
                double epsilon = 0.001;
                allData[counter]     = new double[5];
                allData[counter][0]  = epsilon + double.Parse(numbers[0]);
                allData[counter][0] /= 10;

                allData[counter][1]  = epsilon + double.Parse(numbers[1]);
                allData[counter][1] /= 10;
                allData[counter][2]  = epsilon + double.Parse(numbers[2]);

                if (double.Parse(numbers[3]) == 1)
                {
                    allData[counter][3] = 1;
                    allData[counter][4] = 0;
                }
                else
                {
                    allData[counter][3] = 0;
                    allData[counter][4] = 1;
                }
                counter++;
                line = "";
            }

            file.Close();

            // Suspend the screen.
            Console.ReadLine();


            // mock dataexample
            // allData[0] = new double[] {43, 43, 7, 0, 1};

            /*
             * Console.WriteLine("\nBegin Build 2013 neural network demo");
             * Console.WriteLine("\nData is the famous Iris flower set.");
             * Console.WriteLine("Data is sepal length, sepal width, petal length, petal width -> iris species");
             * Console.WriteLine("Iris setosa = 0 0 1, Iris versicolor = 0 1 0, Iris virginica = 1 0 0 ");
             * Console.WriteLine("The goal is to predict species from sepal length, width, petal length, width\n");
             *
             * Console.WriteLine("Raw data resembles:\n");
             * Console.WriteLine(" 5.1, 3.5, 1.4, 0.2, Iris setosa");
             * Console.WriteLine(" 7.0, 3.2, 4.7, 1.4, Iris versicolor");
             * Console.WriteLine(" 6.3, 3.3, 6.0, 2.5, Iris virginica");
             * Console.WriteLine(" ......\n");
             */


            /*
             *
             * double[][] allData = new double[150][];
             * allData[0] = new double[] { 5.1, 3.5, 1.4, 0.2, 0, 0, 1 }; // sepal length, width, petal length, width
             * allData[1] = new double[] { 4.9, 3.0, 1.4, 0.2, 0, 0, 1 }; // Iris setosa = 0 0 1
             * allData[2] = new double[] { 4.7, 3.2, 1.3, 0.2, 0, 0, 1 }; // Iris versicolor = 0 1 0
             * allData[3] = new double[] { 4.6, 3.1, 1.5, 0.2, 0, 0, 1 }; // Iris virginica = 1 0 0
             * allData[4] = new double[] { 5.0, 3.6, 1.4, 0.2, 0, 0, 1 };
             * allData[5] = new double[] { 5.4, 3.9, 1.7, 0.4, 0, 0, 1 };
             * allData[6] = new double[] { 4.6, 3.4, 1.4, 0.3, 0, 0, 1 };
             * allData[7] = new double[] { 5.0, 3.4, 1.5, 0.2, 0, 0, 1 };
             * allData[8] = new double[] { 4.4, 2.9, 1.4, 0.2, 0, 0, 1 };
             * allData[9] = new double[] { 4.9, 3.1, 1.5, 0.1, 0, 0, 1 };
             *
             * allData[10] = new double[] { 5.4, 3.7, 1.5, 0.2, 0, 0, 1 };
             * allData[11] = new double[] { 4.8, 3.4, 1.6, 0.2, 0, 0, 1 };
             * allData[12] = new double[] { 4.8, 3.0, 1.4, 0.1, 0, 0, 1 };
             * allData[13] = new double[] { 4.3, 3.0, 1.1, 0.1, 0, 0, 1 };
             * allData[14] = new double[] { 5.8, 4.0, 1.2, 0.2, 0, 0, 1 };
             * allData[15] = new double[] { 5.7, 4.4, 1.5, 0.4, 0, 0, 1 };
             * allData[16] = new double[] { 5.4, 3.9, 1.3, 0.4, 0, 0, 1 };
             * allData[17] = new double[] { 5.1, 3.5, 1.4, 0.3, 0, 0, 1 };
             * allData[18] = new double[] { 5.7, 3.8, 1.7, 0.3, 0, 0, 1 };
             * allData[19] = new double[] { 5.1, 3.8, 1.5, 0.3, 0, 0, 1 };
             *
             * allData[20] = new double[] { 5.4, 3.4, 1.7, 0.2, 0, 0, 1 };
             * allData[21] = new double[] { 5.1, 3.7, 1.5, 0.4, 0, 0, 1 };
             * allData[22] = new double[] { 4.6, 3.6, 1.0, 0.2, 0, 0, 1 };
             * allData[23] = new double[] { 5.1, 3.3, 1.7, 0.5, 0, 0, 1 };
             * allData[24] = new double[] { 4.8, 3.4, 1.9, 0.2, 0, 0, 1 };
             * allData[25] = new double[] { 5.0, 3.0, 1.6, 0.2, 0, 0, 1 };
             * allData[26] = new double[] { 5.0, 3.4, 1.6, 0.4, 0, 0, 1 };
             * allData[27] = new double[] { 5.2, 3.5, 1.5, 0.2, 0, 0, 1 };
             * allData[28] = new double[] { 5.2, 3.4, 1.4, 0.2, 0, 0, 1 };
             * allData[29] = new double[] { 4.7, 3.2, 1.6, 0.2, 0, 0, 1 };
             *
             * allData[30] = new double[] { 4.8, 3.1, 1.6, 0.2, 0, 0, 1 };
             * allData[31] = new double[] { 5.4, 3.4, 1.5, 0.4, 0, 0, 1 };
             * allData[32] = new double[] { 5.2, 4.1, 1.5, 0.1, 0, 0, 1 };
             * allData[33] = new double[] { 5.5, 4.2, 1.4, 0.2, 0, 0, 1 };
             * allData[34] = new double[] { 4.9, 3.1, 1.5, 0.1, 0, 0, 1 };
             * allData[35] = new double[] { 5.0, 3.2, 1.2, 0.2, 0, 0, 1 };
             * allData[36] = new double[] { 5.5, 3.5, 1.3, 0.2, 0, 0, 1 };
             * allData[37] = new double[] { 4.9, 3.1, 1.5, 0.1, 0, 0, 1 };
             * allData[38] = new double[] { 4.4, 3.0, 1.3, 0.2, 0, 0, 1 };
             * allData[39] = new double[] { 5.1, 3.4, 1.5, 0.2, 0, 0, 1 };
             *
             * allData[40] = new double[] { 5.0, 3.5, 1.3, 0.3, 0, 0, 1 };
             * allData[41] = new double[] { 4.5, 2.3, 1.3, 0.3, 0, 0, 1 };
             * allData[42] = new double[] { 4.4, 3.2, 1.3, 0.2, 0, 0, 1 };
             * allData[43] = new double[] { 5.0, 3.5, 1.6, 0.6, 0, 0, 1 };
             * allData[44] = new double[] { 5.1, 3.8, 1.9, 0.4, 0, 0, 1 };
             * allData[45] = new double[] { 4.8, 3.0, 1.4, 0.3, 0, 0, 1 };
             * allData[46] = new double[] { 5.1, 3.8, 1.6, 0.2, 0, 0, 1 };
             * allData[47] = new double[] { 4.6, 3.2, 1.4, 0.2, 0, 0, 1 };
             * allData[48] = new double[] { 5.3, 3.7, 1.5, 0.2, 0, 0, 1 };
             * allData[49] = new double[] { 5.0, 3.3, 1.4, 0.2, 0, 0, 1 };
             *
             * allData[50] = new double[] { 7.0, 3.2, 4.7, 1.4, 0, 1, 0 };
             * allData[51] = new double[] { 6.4, 3.2, 4.5, 1.5, 0, 1, 0 };
             * allData[52] = new double[] { 6.9, 3.1, 4.9, 1.5, 0, 1, 0 };
             * allData[53] = new double[] { 5.5, 2.3, 4.0, 1.3, 0, 1, 0 };
             * allData[54] = new double[] { 6.5, 2.8, 4.6, 1.5, 0, 1, 0 };
             * allData[55] = new double[] { 5.7, 2.8, 4.5, 1.3, 0, 1, 0 };
             * allData[56] = new double[] { 6.3, 3.3, 4.7, 1.6, 0, 1, 0 };
             * allData[57] = new double[] { 4.9, 2.4, 3.3, 1.0, 0, 1, 0 };
             * allData[58] = new double[] { 6.6, 2.9, 4.6, 1.3, 0, 1, 0 };
             * allData[59] = new double[] { 5.2, 2.7, 3.9, 1.4, 0, 1, 0 };
             *
             * allData[60] = new double[] { 5.0, 2.0, 3.5, 1.0, 0, 1, 0 };
             * allData[61] = new double[] { 5.9, 3.0, 4.2, 1.5, 0, 1, 0 };
             * allData[62] = new double[] { 6.0, 2.2, 4.0, 1.0, 0, 1, 0 };
             * allData[63] = new double[] { 6.1, 2.9, 4.7, 1.4, 0, 1, 0 };
             * allData[64] = new double[] { 5.6, 2.9, 3.6, 1.3, 0, 1, 0 };
             * allData[65] = new double[] { 6.7, 3.1, 4.4, 1.4, 0, 1, 0 };
             * allData[66] = new double[] { 5.6, 3.0, 4.5, 1.5, 0, 1, 0 };
             * allData[67] = new double[] { 5.8, 2.7, 4.1, 1.0, 0, 1, 0 };
             * allData[68] = new double[] { 6.2, 2.2, 4.5, 1.5, 0, 1, 0 };
             * allData[69] = new double[] { 5.6, 2.5, 3.9, 1.1, 0, 1, 0 };
             *
             * allData[70] = new double[] { 5.9, 3.2, 4.8, 1.8, 0, 1, 0 };
             * allData[71] = new double[] { 6.1, 2.8, 4.0, 1.3, 0, 1, 0 };
             * allData[72] = new double[] { 6.3, 2.5, 4.9, 1.5, 0, 1, 0 };
             * allData[73] = new double[] { 6.1, 2.8, 4.7, 1.2, 0, 1, 0 };
             * allData[74] = new double[] { 6.4, 2.9, 4.3, 1.3, 0, 1, 0 };
             * allData[75] = new double[] { 6.6, 3.0, 4.4, 1.4, 0, 1, 0 };
             * allData[76] = new double[] { 6.8, 2.8, 4.8, 1.4, 0, 1, 0 };
             * allData[77] = new double[] { 6.7, 3.0, 5.0, 1.7, 0, 1, 0 };
             * allData[78] = new double[] { 6.0, 2.9, 4.5, 1.5, 0, 1, 0 };
             * allData[79] = new double[] { 5.7, 2.6, 3.5, 1.0, 0, 1, 0 };
             *
             * allData[80] = new double[] { 5.5, 2.4, 3.8, 1.1, 0, 1, 0 };
             * allData[81] = new double[] { 5.5, 2.4, 3.7, 1.0, 0, 1, 0 };
             * allData[82] = new double[] { 5.8, 2.7, 3.9, 1.2, 0, 1, 0 };
             * allData[83] = new double[] { 6.0, 2.7, 5.1, 1.6, 0, 1, 0 };
             * allData[84] = new double[] { 5.4, 3.0, 4.5, 1.5, 0, 1, 0 };
             * allData[85] = new double[] { 6.0, 3.4, 4.5, 1.6, 0, 1, 0 };
             * allData[86] = new double[] { 6.7, 3.1, 4.7, 1.5, 0, 1, 0 };
             * allData[87] = new double[] { 6.3, 2.3, 4.4, 1.3, 0, 1, 0 };
             * allData[88] = new double[] { 5.6, 3.0, 4.1, 1.3, 0, 1, 0 };
             * allData[89] = new double[] { 5.5, 2.5, 4.0, 1.3, 0, 1, 0 };
             *
             * allData[90] = new double[] { 5.5, 2.6, 4.4, 1.2, 0, 1, 0 };
             * allData[91] = new double[] { 6.1, 3.0, 4.6, 1.4, 0, 1, 0 };
             * allData[92] = new double[] { 5.8, 2.6, 4.0, 1.2, 0, 1, 0 };
             * allData[93] = new double[] { 5.0, 2.3, 3.3, 1.0, 0, 1, 0 };
             * allData[94] = new double[] { 5.6, 2.7, 4.2, 1.3, 0, 1, 0 };
             * allData[95] = new double[] { 5.7, 3.0, 4.2, 1.2, 0, 1, 0 };
             * allData[96] = new double[] { 5.7, 2.9, 4.2, 1.3, 0, 1, 0 };
             * allData[97] = new double[] { 6.2, 2.9, 4.3, 1.3, 0, 1, 0 };
             * allData[98] = new double[] { 5.1, 2.5, 3.0, 1.1, 0, 1, 0 };
             * allData[99] = new double[] { 5.7, 2.8, 4.1, 1.3, 0, 1, 0 };
             *
             * allData[100] = new double[] { 6.3, 3.3, 6.0, 2.5, 1, 0, 0 };
             * allData[101] = new double[] { 5.8, 2.7, 5.1, 1.9, 1, 0, 0 };
             * allData[102] = new double[] { 7.1, 3.0, 5.9, 2.1, 1, 0, 0 };
             * allData[103] = new double[] { 6.3, 2.9, 5.6, 1.8, 1, 0, 0 };
             * allData[104] = new double[] { 6.5, 3.0, 5.8, 2.2, 1, 0, 0 };
             * allData[105] = new double[] { 7.6, 3.0, 6.6, 2.1, 1, 0, 0 };
             * allData[106] = new double[] { 4.9, 2.5, 4.5, 1.7, 1, 0, 0 };
             * allData[107] = new double[] { 7.3, 2.9, 6.3, 1.8, 1, 0, 0 };
             * allData[108] = new double[] { 6.7, 2.5, 5.8, 1.8, 1, 0, 0 };
             * allData[109] = new double[] { 7.2, 3.6, 6.1, 2.5, 1, 0, 0 };
             *
             * allData[110] = new double[] { 6.5, 3.2, 5.1, 2.0, 1, 0, 0 };
             * allData[111] = new double[] { 6.4, 2.7, 5.3, 1.9, 1, 0, 0 };
             * allData[112] = new double[] { 6.8, 3.0, 5.5, 2.1, 1, 0, 0 };
             * allData[113] = new double[] { 5.7, 2.5, 5.0, 2.0, 1, 0, 0 };
             * allData[114] = new double[] { 5.8, 2.8, 5.1, 2.4, 1, 0, 0 };
             * allData[115] = new double[] { 6.4, 3.2, 5.3, 2.3, 1, 0, 0 };
             * allData[116] = new double[] { 6.5, 3.0, 5.5, 1.8, 1, 0, 0 };
             * allData[117] = new double[] { 7.7, 3.8, 6.7, 2.2, 1, 0, 0 };
             * allData[118] = new double[] { 7.7, 2.6, 6.9, 2.3, 1, 0, 0 };
             * allData[119] = new double[] { 6.0, 2.2, 5.0, 1.5, 1, 0, 0 };
             *
             * allData[120] = new double[] { 6.9, 3.2, 5.7, 2.3, 1, 0, 0 };
             * allData[121] = new double[] { 5.6, 2.8, 4.9, 2.0, 1, 0, 0 };
             * allData[122] = new double[] { 7.7, 2.8, 6.7, 2.0, 1, 0, 0 };
             * allData[123] = new double[] { 6.3, 2.7, 4.9, 1.8, 1, 0, 0 };
             * allData[124] = new double[] { 6.7, 3.3, 5.7, 2.1, 1, 0, 0 };
             * allData[125] = new double[] { 7.2, 3.2, 6.0, 1.8, 1, 0, 0 };
             * allData[126] = new double[] { 6.2, 2.8, 4.8, 1.8, 1, 0, 0 };
             * allData[127] = new double[] { 6.1, 3.0, 4.9, 1.8, 1, 0, 0 };
             * allData[128] = new double[] { 6.4, 2.8, 5.6, 2.1, 1, 0, 0 };
             * allData[129] = new double[] { 7.2, 3.0, 5.8, 1.6, 1, 0, 0 };
             *
             * allData[130] = new double[] { 7.4, 2.8, 6.1, 1.9, 1, 0, 0 };
             * allData[131] = new double[] { 7.9, 3.8, 6.4, 2.0, 1, 0, 0 };
             * allData[132] = new double[] { 6.4, 2.8, 5.6, 2.2, 1, 0, 0 };
             * allData[133] = new double[] { 6.3, 2.8, 5.1, 1.5, 1, 0, 0 };
             * allData[134] = new double[] { 6.1, 2.6, 5.6, 1.4, 1, 0, 0 };
             * allData[135] = new double[] { 7.7, 3.0, 6.1, 2.3, 1, 0, 0 };
             * allData[136] = new double[] { 6.3, 3.4, 5.6, 2.4, 1, 0, 0 };
             * allData[137] = new double[] { 6.4, 3.1, 5.5, 1.8, 1, 0, 0 };
             * allData[138] = new double[] { 6.0, 3.0, 4.8, 1.8, 1, 0, 0 };
             * allData[139] = new double[] { 6.9, 3.1, 5.4, 2.1, 1, 0, 0 };
             *
             * allData[140] = new double[] { 6.7, 3.1, 5.6, 2.4, 1, 0, 0 };
             * allData[141] = new double[] { 6.9, 3.1, 5.1, 2.3, 1, 0, 0 };
             * allData[142] = new double[] { 5.8, 2.7, 5.1, 1.9, 1, 0, 0 };
             * allData[143] = new double[] { 6.8, 3.2, 5.9, 2.3, 1, 0, 0 };
             * allData[144] = new double[] { 6.7, 3.3, 5.7, 2.5, 1, 0, 0 };
             * allData[145] = new double[] { 6.7, 3.0, 5.2, 2.3, 1, 0, 0 };
             * allData[146] = new double[] { 6.3, 2.5, 5.0, 1.9, 1, 0, 0 };
             * allData[147] = new double[] { 6.5, 3.0, 5.2, 2.0, 1, 0, 0 };
             * allData[148] = new double[] { 6.2, 3.4, 5.4, 2.3, 1, 0, 0 };
             * allData[149] = new double[] { 5.9, 3.0, 5.1, 1.8, 1, 0, 0 };
             * 1. Age of patient at time of operation (numerical)
             * 2. Patient's year of operation (year - 1900, numerical)
             * 3. Number of positive axillary nodes detected (numerical)
             * 4. Survival status (class attribute
             *
             */

            //

            Console.WriteLine("\nFirst 6 rows of entire 150-item data set:");
            ShowMatrix(allData, 6, 1, true);

            Console.WriteLine("Creating 80% training and 20% test data matrices");
            double[][] trainData = null;
            double[][] testData  = null;
            MakeTrainTest(allData, out trainData, out testData);

            Console.WriteLine("\nFirst 5 rows of training data:");
            ShowMatrix(trainData, 5, 1, true);
            Console.WriteLine("First 3 rows of test data:");
            ShowMatrix(testData, 3, 1, true);

            Normalize(trainData, new int[] { 0, 1, 2, 3 });
            Normalize(testData, new int[] { 0, 1, 2, 3 });

            Console.WriteLine("\nFirst 5 rows of normalized training data:");
            ShowMatrix(trainData, 5, 1, true);
            Console.WriteLine("First 3 rows of normalized test data:");
            ShowMatrix(testData, 3, 1, true);

            Console.WriteLine("\nCreating a 4-input, 7-hidden, 3-output neural network");
            Console.Write("Hard-coded tanh function for input-to-hidden and softmax for ");
            Console.WriteLine("hidden-to-output activations");
            const int     numInput  = 3;
            const int     numHidden = 3;
            const int     numOutput = 2;
            NeuralNetwork nn        = new NeuralNetwork(numInput, numHidden, numOutput);

            Console.WriteLine("\nInitializing weights and bias to small random values");
            nn.InitializeWeights();

            int    maxEpochs   = 2000;
            double learnRate   = 0.05;
            double momentum    = 0.01;
            double weightDecay = 0.0001;

            Console.WriteLine("Setting maxEpochs = 2000, learnRate = 0.05, momentum = 0.01, weightDecay = 0.0001");
            Console.WriteLine("Training has hard-coded mean squared error < 0.020 stopping condition");

            Console.WriteLine("\nBeginning training using incremental back-propagation\n");
            nn.Train(trainData, maxEpochs, learnRate, momentum, weightDecay);
            Console.WriteLine("Training complete");

            double[] weights = nn.GetWeights();
            Console.WriteLine("Final neural network weights and bias values:");
            ShowVector(weights, 10, 3, true);

            double trainAcc = nn.Accuracy(trainData);

            Console.WriteLine("\nAccuracy on training data = " + trainAcc.ToString("F4"));

            double testAcc = nn.Accuracy(testData);

            Console.WriteLine("\nAccuracy on test data = " + testAcc.ToString("F4"));

            Console.WriteLine("\nEnd Build 2013 neural network demo\n");
            Console.ReadLine();

            /*
             *
             * string[] lines = { "First line", "Second line", "Third line" };
             * System.IO.File.WriteAllLines(@"C:\Users\Public\TestFolder\WriteLines.txt", lines);
             *
             *
             * string text = "A class is the most powerful data type in C#. Like a structure, " +
             *         "a class defines the data and behavior of the data type. ";
             * System.IO.File.WriteAllText(@"C:\Users\Public\TestFolder\WriteText.txt", text);
             *
             * using (System.IO.StreamWriter file = new System.IO.StreamWriter(@"C:\Users\Public\TestFolder\WriteLines2.txt"))
             * {
             * foreach (string line in lines)
             * {
             *  if (!line.Contains("Second"))
             *  {
             *      file.WriteLine(line);
             *  }
             * }
             * }
             *
             * using (System.IO.StreamWriter file = new System.IO.StreamWriter(@"C:\Users\Public\TestFolder\WriteLines2.txt", true))
             * {
             * file.WriteLine("Fourth line");
             * }
             *
             *
             */
        } // Main