public override void Describe( IEvolutionState state, Individual ind, int subpopulation, int threadnum, int log) { if (_ca == null) { _ca = new CA(CA_WIDTH, NEIGHBORHOOD); } int[] trial = new int[CA_WIDTH]; MajorityData input = (MajorityData)Input; // extract the rule ((GPIndividual)ind).Trees[0].Child.Eval( state, threadnum, input, Stack, (GPIndividual)ind, this); int[] rule = _ca.GetRule(); for (int i = 0; i < 64; i++) { rule[i] = (int)((input.Data0 >> i) & 0x1); } for (int i = 64; i < 128; i++) { rule[i] = (int)((input.Data1 >> (i - 64)) & 0x1); } _ca.SetRule(rule); // for good measure though it doesn't matter // print rule var s = "Rule: "; foreach (int r in rule) { s += r; } state.Output.PrintLn(s, log); double sum = 0; for (var i = 0; i < NUM_TESTS; i++) { // set up and run the CA int result = MakeTrial(state, threadnum, trial, RANDOM) ? 1 : 0; _ca.SetVals(trial); _ca.Step(STEPS, true); // extract the fitness if (All(_ca.GetVals(), result)) { sum++; } } _density = (sum / NUM_TESTS); state.Output.PrintLn("Generalization Accuracy: " + _density, 1); // stderr state.Output.PrintLn("Generalization Accuracy: " + _density, log); }
public override void Describe( IEvolutionState state, Individual ind, int subpopulation, int threadnum, int log) { if (_ca == null) { _ca = new CA(CA_WIDTH, NEIGHBORHOOD); } int[] trial = new int[CA_WIDTH]; bool[] genome = ((BitVectorIndividual)ind).genome; // extract the rule int[] rule = _ca.GetRule(); for (int i = 0; i < 128; i++) { rule[i] = (genome[i] ? 1 : 0); } _ca.SetRule(rule); // for good measure though it doesn't matter double sum = 0; for (int i = 0; i < NUM_TESTS; i++) { // set up and run the CA int result = MakeTrial(state, threadnum, trial, RANDOM) ? 1 : 0; _ca.SetVals(trial); _ca.Step(STEPS, true); // extract the fitness if (All(_ca.GetVals(), result)) { sum++; } } _density = sum / NUM_TESTS; if (state.Output == null) // can happen if we call from main() below { Console.Error.WriteLine("Generalization Accuracy: " + _density); } else { state.Output.PrintLn("Generalization Accuracy: " + _density, 1); // stderr state.Output.PrintLn("Generalization Accuracy: " + _density, log); } }
public void Evaluate(IEvolutionState state, Individual ind, int subpopulation, int threadnum) { if (_ca == null) { _ca = new CA(CA_WIDTH, NEIGHBORHOOD); } // we always reevaluate //if (!ind.evaluated) // don't bother reevaluating { MajorityData input = (MajorityData)(this.Input); int sum = 0; // extract the rule ((GPIndividual)ind).Trees[0].Child.Eval( state, threadnum, input, Stack, (GPIndividual)ind, this); int[] rule = _ca.GetRule(); for (int i = 0; i < 64; i++) { rule[i] = (int)(((input.Data0) >> i) & 0x1); } for (int i = 64; i < 128; i++) { rule[i] = (int)(((input.Data1) >> (i - 64)) & 0x1); } _ca.SetRule(rule); // for good measure though it doesn't matter for (int i = 0; i < NUM_TRIALS; i++) { // set up and run the CA _ca.SetVals(_trials[i]); _ca.Step(STEPS, true); // extract the fitness if (All(_ca.GetVals(), _majorities[i])) { sum++; } } SimpleFitness f = (SimpleFitness)ind.Fitness; f.SetFitness(state, sum / (double)NUM_TRIALS, sum == NUM_TRIALS); ind.Evaluated = true; } }
public void Evaluate(IEvolutionState state, Individual ind, int subpopulation, int threadnum) { if (_ca == null) { _ca = new CA(CA_WIDTH, NEIGHBORHOOD); } // we always reevaluate //if (!ind.evaluated) // don't bother reevaluating { int sum = 0; bool[] genome = ((BitVectorIndividual)ind).genome; // extract the rule int[] rule = _ca.GetRule(); for (int i = 0; i < 128; i++) { rule[i] = (genome[i] ? 1 : 0); } _ca.SetRule(rule); // for good measure though it doesn't matter for (int i = 0; i < NUM_TRIALS; i++) { // set up and run the CA _ca.SetVals(_trials[i]); _ca.Step(STEPS, true); // extract the fitness if (All(_ca.GetVals(), _majorities[i])) { sum++; } } SimpleFitness f = (SimpleFitness)ind.Fitness; f.SetFitness(state, sum / (double)NUM_TRIALS, false); ind.Evaluated = true; } }