예제 #1
0
		public ContactSolver(ContactSolverDef def) {
			m_step = def.step;
			m_positionConstraints = new List<ContactPositionConstraint>();
			m_velocityConstraints = new List<ContactVelocityConstraint>();
			m_positions = def.positions;
			m_velocities = def.velocities;
			m_contacts = def.contacts;

			// Initialize position independent portions of the constraints.
			for (int i = 0; i < def.contacts.Count(); ++i) {
				Contact contact = m_contacts[i];

				Fixture fixtureA = contact.m_fixtureA;
				Fixture fixtureB = contact.m_fixtureB;
				Shape shapeA = fixtureA.GetShape();
				Shape shapeB = fixtureB.GetShape();
				float radiusA = shapeA.m_radius;
				float radiusB = shapeB.m_radius;
				Body bodyA = fixtureA.GetBody();
				Body bodyB = fixtureB.GetBody();
				Manifold manifold = contact.GetManifold();

				int pointCount = manifold.points.Count();
				Utilities.Assert(pointCount > 0);

				ContactVelocityConstraint vc = new ContactVelocityConstraint();
				vc.friction = contact.m_friction;
				vc.restitution = contact.m_restitution;
				vc.tangentSpeed = contact.m_tangentSpeed;
				vc.indexA = bodyA.m_islandIndex;
				vc.indexB = bodyB.m_islandIndex;
				vc.invMassA = bodyA.m_invMass;
				vc.invMassB = bodyB.m_invMass;
				vc.invIA = bodyA.m_invI;
				vc.invIB = bodyB.m_invI;
				vc.contactIndex = i;
				//vc.points.Count() = pointCount;
				vc.K.SetZero();
				vc.normalMass.SetZero();

				ContactPositionConstraint pc = new ContactPositionConstraint();
				pc.indexA = bodyA.m_islandIndex;
				pc.indexB = bodyB.m_islandIndex;
				pc.invMassA = bodyA.m_invMass;
				pc.invMassB = bodyB.m_invMass;
				pc.localCenterA = bodyA.m_sweep.localCenter;
				pc.localCenterB = bodyB.m_sweep.localCenter;
				pc.invIA = bodyA.m_invI;
				pc.invIB = bodyB.m_invI;
				pc.localNormal = manifold.localNormal;
				pc.localPoint = manifold.localPoint;
				pc.pointCount = pointCount;
				pc.radiusA = radiusA;
				pc.radiusB = radiusB;
				pc.type = manifold.type;

				for (int j = 0; j < pointCount; ++j) {
					ManifoldPoint cp = manifold.points[j];
					VelocityConstraintPoint vcp = new VelocityConstraintPoint();
					
					if (m_step.warmStarting) {
						vcp.normalImpulse = m_step.dtRatio * cp.normalImpulse;
						vcp.tangentImpulse = m_step.dtRatio * cp.tangentImpulse;
					} else {
						vcp.normalImpulse = 0.0f;
						vcp.tangentImpulse = 0.0f;
					}

					vcp.rA.SetZero();
					vcp.rB.SetZero();
					vcp.normalMass = 0.0f;
					vcp.tangentMass = 0.0f;
					vcp.velocityBias = 0.0f;
					vc.points.Add(vcp);

					pc.localPoints[j] = cp.localPoint;
				}
				m_velocityConstraints.Add(vc);
				m_positionConstraints.Add(pc);
			}
		}
예제 #2
0
        public ContactSolver(ContactSolverDef def)
        {
            m_step = def.step;
            m_positionConstraints = new List <ContactPositionConstraint>();
            m_velocityConstraints = new List <ContactVelocityConstraint>();
            m_positions           = def.positions;
            m_velocities          = def.velocities;
            m_contacts            = def.contacts;

            // Initialize position independent portions of the constraints.
            for (int i = 0; i < def.contacts.Count(); ++i)
            {
                Contact contact = m_contacts[i];

                Fixture  fixtureA = contact.m_fixtureA;
                Fixture  fixtureB = contact.m_fixtureB;
                Shape    shapeA   = fixtureA.GetShape();
                Shape    shapeB   = fixtureB.GetShape();
                float    radiusA  = shapeA.m_radius;
                float    radiusB  = shapeB.m_radius;
                Body     bodyA    = fixtureA.GetBody();
                Body     bodyB    = fixtureB.GetBody();
                Manifold manifold = contact.GetManifold();

                int pointCount = manifold.points.Count();
                Utilities.Assert(pointCount > 0);

                ContactVelocityConstraint vc = new ContactVelocityConstraint();
                vc.friction     = contact.m_friction;
                vc.restitution  = contact.m_restitution;
                vc.tangentSpeed = contact.m_tangentSpeed;
                vc.indexA       = bodyA.m_islandIndex;
                vc.indexB       = bodyB.m_islandIndex;
                vc.invMassA     = bodyA.m_invMass;
                vc.invMassB     = bodyB.m_invMass;
                vc.invIA        = bodyA.m_invI;
                vc.invIB        = bodyB.m_invI;
                vc.contactIndex = i;
                //vc.points.Count() = pointCount;
                vc.K.SetZero();
                vc.normalMass.SetZero();

                ContactPositionConstraint pc = new ContactPositionConstraint();
                pc.indexA       = bodyA.m_islandIndex;
                pc.indexB       = bodyB.m_islandIndex;
                pc.invMassA     = bodyA.m_invMass;
                pc.invMassB     = bodyB.m_invMass;
                pc.localCenterA = bodyA.m_sweep.localCenter;
                pc.localCenterB = bodyB.m_sweep.localCenter;
                pc.invIA        = bodyA.m_invI;
                pc.invIB        = bodyB.m_invI;
                pc.localNormal  = manifold.localNormal;
                pc.localPoint   = manifold.localPoint;
                pc.pointCount   = pointCount;
                pc.radiusA      = radiusA;
                pc.radiusB      = radiusB;
                pc.type         = manifold.type;

                for (int j = 0; j < pointCount; ++j)
                {
                    ManifoldPoint           cp  = manifold.points[j];
                    VelocityConstraintPoint vcp = new VelocityConstraintPoint();

                    if (m_step.warmStarting)
                    {
                        vcp.normalImpulse  = m_step.dtRatio * cp.normalImpulse;
                        vcp.tangentImpulse = m_step.dtRatio * cp.tangentImpulse;
                    }
                    else
                    {
                        vcp.normalImpulse  = 0.0f;
                        vcp.tangentImpulse = 0.0f;
                    }

                    vcp.rA.SetZero();
                    vcp.rB.SetZero();
                    vcp.normalMass   = 0.0f;
                    vcp.tangentMass  = 0.0f;
                    vcp.velocityBias = 0.0f;
                    vc.points.Add(vcp);

                    pc.localPoints[j] = cp.localPoint;
                }
                m_velocityConstraints.Add(vc);
                m_positionConstraints.Add(pc);
            }
        }
예제 #3
0
        public void InitializeVelocityConstraints()
        {
            for (int i = 0; i < m_contacts.Count(); ++i)
            {
                ContactVelocityConstraint vc = m_velocityConstraints[i];
                ContactPositionConstraint pc = m_positionConstraints[i];

                float    radiusA  = pc.radiusA;
                float    radiusB  = pc.radiusB;
                Manifold manifold = m_contacts[vc.contactIndex].GetManifold();

                int indexA = vc.indexA;
                int indexB = vc.indexB;

                float mA           = vc.invMassA;
                float mB           = vc.invMassB;
                float iA           = vc.invIA;
                float iB           = vc.invIB;
                Vec2  localCenterA = pc.localCenterA;
                Vec2  localCenterB = pc.localCenterB;

                Vec2  cA = m_positions[indexA].c;
                float aA = m_positions[indexA].a;
                Vec2  vA = m_velocities[indexA].v;
                float wA = m_velocities[indexA].w;

                Vec2  cB = m_positions[indexB].c;
                float aB = m_positions[indexB].a;
                Vec2  vB = m_velocities[indexB].v;
                float wB = m_velocities[indexB].w;

                Utilities.Assert(manifold.points.Count() > 0);

                Transform xfA = new Transform();
                Transform xfB = new Transform();
                xfA.q.Set(aA);
                xfB.q.Set(aB);
                xfA.p = cA - Utilities.Mul(xfA.q, localCenterA);
                xfB.p = cB - Utilities.Mul(xfB.q, localCenterB);

                WorldManifold worldManifold = new WorldManifold();
                worldManifold.Initialize(manifold, xfA, radiusA, xfB, radiusB);

                vc.normal = worldManifold.normal;

                int pointCount = vc.points.Count;
                for (int j = 0; j < pointCount; ++j)
                {
                    VelocityConstraintPoint vcp = vc.points[j];

                    vcp.rA = worldManifold.points[j] - cA;
                    vcp.rB = worldManifold.points[j] - cB;

                    float rnA = Utilities.Cross(vcp.rA, vc.normal);
                    float rnB = Utilities.Cross(vcp.rB, vc.normal);

                    float kNormal = mA + mB + iA * rnA * rnA + iB * rnB * rnB;

                    vcp.normalMass = kNormal > 0.0f ? 1.0f / kNormal : 0.0f;

                    Vec2 tangent = Utilities.Cross(vc.normal, 1.0f);

                    float rtA = Utilities.Cross(vcp.rA, tangent);
                    float rtB = Utilities.Cross(vcp.rB, tangent);

                    float kTangent = mA + mB + iA * rtA * rtA + iB * rtB * rtB;

                    vcp.tangentMass = kTangent > 0.0f ? 1.0f / kTangent : 0.0f;

                    // Setup a velocity bias for restitution.
                    vcp.velocityBias = 0.0f;
                    float vRel = Utilities.Dot(vc.normal, vB + Utilities.Cross(wB, vcp.rB) - vA - Utilities.Cross(wA, vcp.rA));
                    if (vRel < -Settings._velocityThreshold)
                    {
                        vcp.velocityBias = -vc.restitution * vRel;
                    }
                }

                // If we have two points, then prepare the block solver.
                if (vc.points.Count() == 2)
                {
                    VelocityConstraintPoint vcp1 = vc.points[0];
                    VelocityConstraintPoint vcp2 = vc.points[1];

                    float rn1A = Utilities.Cross(vcp1.rA, vc.normal);
                    float rn1B = Utilities.Cross(vcp1.rB, vc.normal);
                    float rn2A = Utilities.Cross(vcp2.rA, vc.normal);
                    float rn2B = Utilities.Cross(vcp2.rB, vc.normal);

                    float k11 = mA + mB + iA * rn1A * rn1A + iB * rn1B * rn1B;
                    float k22 = mA + mB + iA * rn2A * rn2A + iB * rn2B * rn2B;
                    float k12 = mA + mB + iA * rn1A * rn2A + iB * rn1B * rn2B;

                    // Ensure a reasonable condition number.
                    const float k_maxConditionNumber = 1000.0f;
                    if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12))
                    {
                        // K is safe to invert.
                        vc.K.ex.Set(k11, k12);
                        vc.K.ey.Set(k12, k22);
                        vc.normalMass = vc.K.GetInverse();
                    }
                    else
                    {
                        // The constraints are redundant, just use one.
                        // TODO_ERIN use deepest?
                        vc.points.Clear();
                        vc.points.Add(new VelocityConstraintPoint());
                    }
                }
            }
        }
예제 #4
0
        public void SolveVelocityConstraints()
        {
            for (int i = 0; i < m_contacts.Count(); ++i)
            {
                ContactVelocityConstraint vc = m_velocityConstraints[i];

                int   indexA     = vc.indexA;
                int   indexB     = vc.indexB;
                float mA         = vc.invMassA;
                float iA         = vc.invIA;
                float mB         = vc.invMassB;
                float iB         = vc.invIB;
                int   pointCount = vc.points.Count();

                Vec2  vA = m_velocities[indexA].v;
                float wA = m_velocities[indexA].w;
                Vec2  vB = m_velocities[indexB].v;
                float wB = m_velocities[indexB].w;

                Vec2  normal   = vc.normal;
                Vec2  tangent  = Utilities.Cross(normal, 1.0f);
                float friction = vc.friction;

                Utilities.Assert(pointCount == 1 || pointCount == 2);

                // Solve tangent constraints first because non-penetration is more important
                // than friction.
                for (int j = 0; j < pointCount; ++j)
                {
                    VelocityConstraintPoint vcp = vc.points[j];

                    // Relative velocity at contact
                    Vec2 dv = vB + Utilities.Cross(wB, vcp.rB) - vA - Utilities.Cross(wA, vcp.rA);

                    // Compute tangent force
                    float vt     = Utilities.Dot(dv, tangent) - vc.tangentSpeed;
                    float lambda = vcp.tangentMass * (-vt);

                    // Clamp the accumulated force
                    float maxFriction = friction * vcp.normalImpulse;
                    float newImpulse  = Utilities.Clamp(vcp.tangentImpulse + lambda, -maxFriction, maxFriction);
                    lambda             = newImpulse - vcp.tangentImpulse;
                    vcp.tangentImpulse = newImpulse;

                    // Apply contact impulse
                    Vec2 P = lambda * tangent;

                    vA -= mA * P;
                    wA -= iA * Utilities.Cross(vcp.rA, P);

                    vB += mB * P;
                    wB += iB * Utilities.Cross(vcp.rB, P);
                }

                // Solve normal constraints
                if (vc.points.Count() == 1)
                {
                    VelocityConstraintPoint vcp = vc.points[0];

                    // Relative velocity at contact
                    Vec2 dv = vB + Utilities.Cross(wB, vcp.rB) - vA - Utilities.Cross(wA, vcp.rA);

                    // Compute normal impulse
                    float vn     = Utilities.Dot(dv, normal);
                    float lambda = -vcp.normalMass * (vn - vcp.velocityBias);

                    // Clamp the accumulated impulse
                    float newImpulse = Math.Max(vcp.normalImpulse + lambda, 0.0f);
                    lambda            = newImpulse - vcp.normalImpulse;
                    vcp.normalImpulse = newImpulse;

                    // Apply contact impulse
                    Vec2 P = lambda * normal;
                    vA -= mA * P;
                    wA -= iA * Utilities.Cross(vcp.rA, P);

                    vB += mB * P;
                    wB += iB * Utilities.Cross(vcp.rB, P);
                }
                else
                {
                    // Block solver developed in collaboration with Dirk Gregorius (back in 01/07 on Box2D_Lite).
                    // Build the mini LCP for this contact patch
                    //
                    // vn = A * x + b, vn >= 0, , vn >= 0, x >= 0 and vn_i * x_i = 0 with i = 1..2
                    //
                    // A = J * W * JT and J = ( -n, -r1 x n, n, r2 x n )
                    // b = vn0 - velocityBias
                    //
                    // The system is solved using the "Total enumeration method" (s. Murty). The complementary constraint vn_i * x_i
                    // implies that we must have in any solution either vn_i = 0 or x_i = 0. So for the 2D contact problem the cases
                    // vn1 = 0 and vn2 = 0, x1 = 0 and x2 = 0, x1 = 0 and vn2 = 0, x2 = 0 and vn1 = 0 need to be tested. The first valid
                    // solution that satisfies the problem is chosen.
                    //
                    // In order to account of the accumulated impulse 'a' (because of the iterative nature of the solver which only requires
                    // that the accumulated impulse is clamped and not the incremental impulse) we change the impulse variable (x_i).
                    //
                    // Substitute:
                    //
                    // x = a + d
                    //
                    // a := old total impulse
                    // x := new total impulse
                    // d := incremental impulse
                    //
                    // For the current iteration we extend the formula for the incremental impulse
                    // to compute the new total impulse:
                    //
                    // vn = A * d + b
                    //    = A * (x - a) + b
                    //    = A * x + b - A * a
                    //    = A * x + b'
                    // b' = b - A * a;

                    VelocityConstraintPoint cp1 = vc.points[0];
                    VelocityConstraintPoint cp2 = vc.points[1];

                    Vec2 a = new Vec2(cp1.normalImpulse, cp2.normalImpulse);
                    Utilities.Assert(a.X >= 0.0f && a.Y >= 0.0f);

                    // Relative velocity at contact
                    Vec2 dv1 = vB + Utilities.Cross(wB, cp1.rB) - vA - Utilities.Cross(wA, cp1.rA);
                    Vec2 dv2 = vB + Utilities.Cross(wB, cp2.rB) - vA - Utilities.Cross(wA, cp2.rA);

                    // Compute normal velocity
                    float vn1 = Utilities.Dot(dv1, normal);
                    float vn2 = Utilities.Dot(dv2, normal);

                    Vec2 b;
                    b.X = vn1 - cp1.velocityBias;
                    b.Y = vn2 - cp2.velocityBias;

                    // Compute b'
                    b -= Utilities.Mul(vc.K, a);

                    const float k_errorTol = 1e-3f;

                    for (; ;)
                    {
                        //
                        // Case 1: vn = 0
                        //
                        // 0 = A * x + b'
                        //
                        // Solve for x:
                        //
                        // x = - inv(A) * b'
                        //
                        Vec2 x = -Utilities.Mul(vc.normalMass, b);

                        if (x.X >= 0.0f && x.Y >= 0.0f)
                        {
                            // Get the incremental impulse
                            Vec2 d = x - a;

                            // Apply incremental impulse
                            Vec2 P1 = d.X * normal;
                            Vec2 P2 = d.Y * normal;
                            vA -= mA * (P1 + P2);
                            wA -= iA * (Utilities.Cross(cp1.rA, P1) + Utilities.Cross(cp2.rA, P2));

                            vB += mB * (P1 + P2);
                            wB += iB * (Utilities.Cross(cp1.rB, P1) + Utilities.Cross(cp2.rB, P2));

                            // Accumulate
                            cp1.normalImpulse = x.X;
                            cp2.normalImpulse = x.Y;

#if B2_DEBUG_SOLVER
                            // Postconditions
                            dv1 = vB + Utilities.Cross(wB, cp1.rB) - vA - Utilities.Cross(wA, cp1.rA);
                            dv2 = vB + Utilities.Cross(wB, cp2.rB) - vA - Utilities.Cross(wA, cp2.rA);

                            // Compute normal velocity
                            vn1 = Utilities.Dot(dv1, normal);
                            vn2 = Utilities.Dot(dv2, normal);

                            Utilities.Assert(Math.Abs(vn1 - cp1.velocityBias) < k_errorTol);
                            Utilities.Assert(Math.Abs(vn2 - cp2.velocityBias) < k_errorTol);
#endif
                            break;
                        }

                        //
                        // Case 2: vn1 = 0 and x2 = 0
                        //
                        //   0 = a11 * x1 + a12 * 0 + b1'
                        // vn2 = a21 * x1 + a22 * 0 + '
                        //
                        x.X = -cp1.normalMass * b.X;
                        x.Y = 0.0f;
                        vn1 = 0.0f;
                        vn2 = vc.K.ex.Y * x.X + b.Y;

                        if (x.X >= 0.0f && vn2 >= 0.0f)
                        {
                            // Get the incremental impulse
                            Vec2 d = x - a;

                            // Apply incremental impulse
                            Vec2 P1 = d.X * normal;
                            Vec2 P2 = d.Y * normal;
                            vA -= mA * (P1 + P2);
                            wA -= iA * (Utilities.Cross(cp1.rA, P1) + Utilities.Cross(cp2.rA, P2));

                            vB += mB * (P1 + P2);
                            wB += iB * (Utilities.Cross(cp1.rB, P1) + Utilities.Cross(cp2.rB, P2));

                            // Accumulate
                            cp1.normalImpulse = x.X;
                            cp2.normalImpulse = x.Y;

#if B2_DEBUG_SOLVER
                            // Postconditions
                            dv1 = vB + Utilities.Cross(wB, cp1.rB) - vA - Utilities.Cross(wA, cp1.rA);

                            // Compute normal velocity
                            vn1 = Utilities.Dot(dv1, normal);

                            Utilities.Assert(Math.Abs(vn1 - cp1.velocityBias) < k_errorTol);
#endif
                            break;
                        }


                        //
                        // Case 3: vn2 = 0 and x1 = 0
                        //
                        // vn1 = a11 * 0 + a12 * x2 + b1'
                        //   0 = a21 * 0 + a22 * x2 + '
                        //
                        x.X = 0.0f;
                        x.Y = -cp2.normalMass * b.Y;
                        vn1 = vc.K.ey.X * x.Y + b.X;
                        vn2 = 0.0f;

                        if (x.Y >= 0.0f && vn1 >= 0.0f)
                        {
                            // Resubstitute for the incremental impulse
                            Vec2 d = x - a;

                            // Apply incremental impulse
                            Vec2 P1 = d.X * normal;
                            Vec2 P2 = d.Y * normal;
                            vA -= mA * (P1 + P2);
                            wA -= iA * (Utilities.Cross(cp1.rA, P1) + Utilities.Cross(cp2.rA, P2));

                            vB += mB * (P1 + P2);
                            wB += iB * (Utilities.Cross(cp1.rB, P1) + Utilities.Cross(cp2.rB, P2));

                            // Accumulate
                            cp1.normalImpulse = x.X;
                            cp2.normalImpulse = x.Y;

#if B2_DEBUG_SOLVER
                            // Postconditions
                            dv2 = vB + Utilities.Cross(wB, cp2.rB) - vA - Utilities.Cross(wA, cp2.rA);

                            // Compute normal velocity
                            vn2 = Utilities.Dot(dv2, normal);

                            Utilities.Assert(Math.Abs(vn2 - cp2.velocityBias) < k_errorTol);
#endif
                            break;
                        }

                        //
                        // Case 4: x1 = 0 and x2 = 0
                        //
                        // vn1 = b1
                        // vn2 = ;
                        x.X = 0.0f;
                        x.Y = 0.0f;
                        vn1 = b.X;
                        vn2 = b.Y;

                        if (vn1 >= 0.0f && vn2 >= 0.0f)
                        {
                            // Resubstitute for the incremental impulse
                            Vec2 d = x - a;

                            // Apply incremental impulse
                            Vec2 P1 = d.X * normal;
                            Vec2 P2 = d.Y * normal;
                            vA -= mA * (P1 + P2);
                            wA -= iA * (Utilities.Cross(cp1.rA, P1) + Utilities.Cross(cp2.rA, P2));

                            vB += mB * (P1 + P2);
                            wB += iB * (Utilities.Cross(cp1.rB, P1) + Utilities.Cross(cp2.rB, P2));

                            // Accumulate
                            cp1.normalImpulse = x.X;
                            cp2.normalImpulse = x.Y;

                            break;
                        }

                        // No solution, give up. This is hit sometimes, but it doesn't seem to matter.
                        break;
                    }
                }

                var velA = m_velocities[indexA];
                velA.v = vA;
                velA.w = wA;
                m_velocities[indexA] = velA;

                var velB = m_velocities[indexB];
                velB.v = vB;
                velB.w = wB;
                m_velocities[indexB] = velB;
            }
        }