public static b2Rot Create() { var rot = new b2Rot(); rot.SetIdentity(); return(rot); }
public static b2Vec2 b2Mul(b2Rot q, b2Vec2 v) { b2Vec2 b; b.x = q.c * v.x - q.s * v.y; b.y = q.s * v.x + q.c * v.y; return(b); }
public static b2Vec2 b2MulT(b2Rot q, b2Vec2 v) { float x = q.c * v.x + q.s * v.y; float y = -q.s * v.x + q.c * v.y; b2Vec2 b = b2Vec2.Zero; b.Set(x, y); return b; }
public static b2Vec2 b2MulT(ref b2Rot q, ref b2Vec2 v) { b2Vec2 b; b.x = q.c * v.x + q.s * v.y; b.y = -q.s * v.x + q.c * v.y; return(b); }
public static b2Rot b2MulT(b2Rot q, b2Rot r) { // [ qc qs] * [rc -rs] = [qc*rc+qs*rs -qc*rs+qs*rc] // [-qs qc] [rs rc] [-qs*rc+qc*rs qs*rs+qc*rc] // s = qc * rs - qs * rc // c = qc * rc + qs * rs b2Rot qr = b2Rot.Create(); qr.s = q.c * r.s - q.s * r.c; qr.c = q.c * r.c + q.s * r.s; return qr; }
public static b2Rot b2Mul(b2Rot q, b2Rot r) { // [qc -qs] * [rc -rs] = [qc*rc-qs*rs -qc*rs-qs*rc] // [qs qc] [rs rc] [qs*rc+qc*rs -qs*rs+qc*rc] // s = qs * rc + qc * rs // c = qc * rc - qs * rs b2Rot qr; qr.s = q.s * r.c + q.c * r.s; qr.c = q.c * r.c - q.s * r.s; return(qr); }
public override bool SolvePositionConstraints(b2SolverData data) { b2Vec2 cA = m_bodyA.InternalPosition.c; float aA = m_bodyA.InternalPosition.a; b2Vec2 cB = m_bodyB.InternalPosition.c; float aB = m_bodyB.InternalPosition.a; b2Rot qA = new b2Rot(aA); b2Rot qB = new b2Rot(aB); b2Vec2 rA = b2Math.b2Mul(qA, m_localAnchorA - m_localCenterA); b2Vec2 rB = b2Math.b2Mul(qB, m_localAnchorB - m_localCenterB); // Get the pulley axes. b2Vec2 uA = cA + rA - m_groundAnchorA; b2Vec2 uB = cB + rB - m_groundAnchorB; float lengthA = uA.Length; float lengthB = uB.Length; if (lengthA > 10.0f * b2Settings.b2_linearSlop) { uA *= 1.0f / lengthA; } else { uA.SetZero(); } if (lengthB > 10.0f * b2Settings.b2_linearSlop) { uB *= 1.0f / lengthB; } else { uB.SetZero(); } // Compute effective mass. float ruA = b2Math.b2Cross(rA, uA); float ruB = b2Math.b2Cross(rB, uB); float mA = m_invMassA + m_invIA * ruA * ruA; float mB = m_invMassB + m_invIB * ruB * ruB; float mass = mA + m_ratio * m_ratio * mB; if (mass > 0.0f) { mass = 1.0f / mass; } float C = m_constant - lengthA - m_ratio * lengthB; float linearError = b2Math.b2Abs(C); float impulse = -mass * C; b2Vec2 PA = -impulse * uA; b2Vec2 PB = -m_ratio * impulse * uB; cA += m_invMassA * PA; aA += m_invIA * b2Math.b2Cross(rA, PA); cB += m_invMassB * PB; aB += m_invIB * b2Math.b2Cross(rB, PB); m_bodyA.InternalPosition.c = cA; m_bodyA.InternalPosition.a = aA; m_bodyB.InternalPosition.c = cB; m_bodyB.InternalPosition.a = aB; return linearError < b2Settings.b2_linearSlop; }
/// The default ructor does nothing. /*public b2Transform() { p = new b2Vec2(); q = new b2Rot(); }*/ /// Initialize using a position vector and a rotation. b2Transform(b2Vec2 position, b2Rot rotation) { p = position; q = rotation; }
/// The default ructor does nothing. /*public b2Transform() * { * p = new b2Vec2(); * q = new b2Rot(); * }*/ /// Initialize using a position vector and a rotation. b2Transform(b2Vec2 position, b2Rot rotation) { p = position; q = rotation; }
public override bool SolvePositionConstraints(b2SolverData data) { b2Vec2 cA = data.positions[m_indexA].c; float aA = data.positions[m_indexA].a; b2Vec2 cB = data.positions[m_indexB].c; float aB = data.positions[m_indexB].a; b2Vec2 cC = data.positions[m_indexC].c; float aC = data.positions[m_indexC].a; b2Vec2 cD = data.positions[m_indexD].c; float aD = data.positions[m_indexD].a; b2Rot qA = new b2Rot(aA); b2Rot qB = new b2Rot(aB); b2Rot qC = new b2Rot(aC); b2Rot qD = new b2Rot(aD); float linearError = 0.0f; float coordinateA, coordinateB; b2Vec2 JvAC = b2Vec2.Zero, JvBD = b2Vec2.Zero; float JwA, JwB, JwC, JwD; float mass = 0.0f; if (m_typeA == b2JointType.e_revoluteJoint) { JvAC.SetZero(); JwA = 1.0f; JwC = 1.0f; mass += m_iA + m_iC; coordinateA = aA - aC - m_referenceAngleA; } else { b2Vec2 u = b2Math.b2Mul(qC, m_localAxisC); b2Vec2 rC = b2Math.b2Mul(qC, m_localAnchorC - m_lcC); b2Vec2 rA = b2Math.b2Mul(qA, m_localAnchorA - m_lcA); JvAC = u; JwC = b2Math.b2Cross(rC, u); JwA = b2Math.b2Cross(rA, u); mass += m_mC + m_mA + m_iC * JwC * JwC + m_iA * JwA * JwA; b2Vec2 pC = m_localAnchorC - m_lcC; b2Vec2 pA = b2Math.b2MulT(qC, rA + (cA - cC)); coordinateA = b2Math.b2Dot(pA - pC, m_localAxisC); } if (m_typeB == b2JointType.e_revoluteJoint) { JvBD.SetZero(); JwB = m_ratio; JwD = m_ratio; mass += m_ratio * m_ratio * (m_iB + m_iD); coordinateB = aB - aD - m_referenceAngleB; } else { b2Vec2 u = b2Math.b2Mul(qD, m_localAxisD); b2Vec2 rD = b2Math.b2Mul(qD, m_localAnchorD - m_lcD); b2Vec2 rB = b2Math.b2Mul(qB, m_localAnchorB - m_lcB); JvBD = m_ratio * u; JwD = m_ratio * b2Math.b2Cross(rD, u); JwB = m_ratio * b2Math.b2Cross(rB, u); mass += m_ratio * m_ratio * (m_mD + m_mB) + m_iD * JwD * JwD + m_iB * JwB * JwB; b2Vec2 pD = m_localAnchorD - m_lcD; b2Vec2 pB = b2Math.b2MulT(qD, rB + (cB - cD)); coordinateB = b2Math.b2Dot(pB - pD, m_localAxisD); } float C = (coordinateA + m_ratio * coordinateB) - m_constant; float impulse = 0.0f; if (mass > 0.0f) { impulse = -C / mass; } cA += m_mA * impulse * JvAC; aA += m_iA * impulse * JwA; cB += m_mB * impulse * JvBD; aB += m_iB * impulse * JwB; cC -= m_mC * impulse * JvAC; aC -= m_iC * impulse * JwC; cD -= m_mD * impulse * JvBD; aD -= m_iD * impulse * JwD; data.positions[m_indexA].c = cA; data.positions[m_indexA].a = aA; data.positions[m_indexB].c = cB; data.positions[m_indexB].a = aB; data.positions[m_indexC].c = cC; data.positions[m_indexC].a = aC; data.positions[m_indexD].c = cD; data.positions[m_indexD].a = aD; // TODO_ERIN not implemented return linearError < b2Settings.b2_linearSlop; }
public override void InitVelocityConstraints(b2SolverData data) { m_indexA = m_bodyA.IslandIndex; m_indexB = m_bodyB.IslandIndex; m_localCenterA = m_bodyA.Sweep.localCenter; m_localCenterB = m_bodyB.Sweep.localCenter; m_invMassA = m_bodyA.InvertedMass; m_invMassB = m_bodyB.InvertedMass; m_invIA = m_bodyA.InvertedI; m_invIB = m_bodyB.InvertedI; b2Vec2 cA = data.positions[m_indexA].c; float aA = data.positions[m_indexA].a; b2Vec2 vA = data.velocities[m_indexA].v; float wA = data.velocities[m_indexA].w; b2Vec2 cB = data.positions[m_indexB].c; float aB = data.positions[m_indexB].a; b2Vec2 vB = data.velocities[m_indexB].v; float wB = data.velocities[m_indexB].w; b2Rot qA = new b2Rot(aA); b2Rot qB = new b2Rot(aB); m_rA = b2Math.b2Mul(qA, m_localAnchorA - m_localCenterA); m_rB = b2Math.b2Mul(qB, m_localAnchorB - m_localCenterB); // J = [-I -r1_skew I r2_skew] // [ 0 -1 0 1] // r_skew = [-ry; rx] // Matlab // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB] // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB] // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB] float mA = m_invMassA, mB = m_invMassB; float iA = m_invIA, iB = m_invIB; bool fixedRotation = (iA + iB == 0.0f); b2Vec3 ex = new b2Vec3(); b2Vec3 ey = new b2Vec3(); b2Vec3 ez = new b2Vec3(); ex.x = mA + mB + m_rA.y * m_rA.y * iA + m_rB.y * m_rB.y * iB; ey.x = -m_rA.y * m_rA.x * iA - m_rB.y * m_rB.x * iB; ez.x = -m_rA.y * iA - m_rB.y * iB; ex.y = ey.x; ey.y = mA + mB + m_rA.x * m_rA.x * iA + m_rB.x * m_rB.x * iB; ez.y = m_rA.x * iA + m_rB.x * iB; ex.z = ez.x; ey.z = ez.y; ez.z = iA + iB; m_mass = new b2Mat33(ex, ey, ez); m_motorMass = iA + iB; if (m_motorMass > 0.0f) { m_motorMass = 1.0f / m_motorMass; } if (m_enableMotor == false || fixedRotation) { m_motorImpulse = 0.0f; } if (m_enableLimit && fixedRotation == false) { float jointAngle = aB - aA - m_referenceAngle; if (b2Math.b2Abs(m_upperAngle - m_lowerAngle) < 2.0f * b2Settings.b2_angularSlop) { m_limitState = b2LimitState.e_equalLimits; } else if (jointAngle <= m_lowerAngle) { if (m_limitState != b2LimitState.e_atLowerLimit) { m_impulse.z = 0.0f; } m_limitState = b2LimitState.e_atLowerLimit; } else if (jointAngle >= m_upperAngle) { if (m_limitState != b2LimitState.e_atUpperLimit) { m_impulse.z = 0.0f; } m_limitState = b2LimitState.e_atUpperLimit; } else { m_limitState = b2LimitState.e_inactiveLimit; m_impulse.z = 0.0f; } } else { m_limitState = b2LimitState.e_inactiveLimit; } if (data.step.warmStarting) { // Scale impulses to support a variable time step. m_impulse *= data.step.dtRatio; m_motorImpulse *= data.step.dtRatio; b2Vec2 P = new b2Vec2(m_impulse.x, m_impulse.y); vA -= mA * P; wA -= iA * (b2Math.b2Cross(m_rA, P) + m_motorImpulse + m_impulse.z); vB += mB * P; wB += iB * (b2Math.b2Cross(m_rB, P) + m_motorImpulse + m_impulse.z); } else { m_impulse.SetZero(); m_motorImpulse = 0.0f; } data.velocities[m_indexA].v = vA; data.velocities[m_indexA].w = wA; data.velocities[m_indexB].v = vB; data.velocities[m_indexB].w = wB; }
public override void InitVelocityConstraints(b2SolverData data) { m_indexA = m_bodyA.IslandIndex; m_indexB = m_bodyB.IslandIndex; m_localCenterA = m_bodyA.Sweep.localCenter; m_localCenterB = m_bodyB.Sweep.localCenter; m_invMassA = m_bodyA.InvertedMass; m_invMassB = m_bodyB.InvertedMass; m_invIA = m_bodyA.InvertedI; m_invIB = m_bodyB.InvertedI; b2Vec2 cA = m_bodyA.InternalPosition.c; float aA = m_bodyA.InternalPosition.a; b2Vec2 vA = m_bodyA.InternalVelocity.v; float wA = m_bodyA.InternalVelocity.w; b2Vec2 cB = m_bodyB.InternalPosition.c; float aB = m_bodyB.InternalPosition.a; b2Vec2 vB = m_bodyB.InternalVelocity.v; float wB = m_bodyB.InternalVelocity.w; b2Rot qA = new b2Rot(aA); b2Rot qB = new b2Rot(aB); m_rA = b2Math.b2Mul(qA, m_localAnchorA - m_localCenterA); m_rB = b2Math.b2Mul(qB, m_localAnchorB - m_localCenterB); // J = [-I -r1_skew I r2_skew] // [ 0 -1 0 1] // r_skew = [-ry; rx] // Matlab // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB] // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB] // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB] float mA = m_invMassA, mB = m_invMassB; float iA = m_invIA, iB = m_invIB; b2Vec3 ex = new b2Vec3(); b2Vec3 ey = new b2Vec3(); b2Vec3 ez = new b2Vec3(); ex.x = mA + mB + m_rA.y * m_rA.y * iA + m_rB.y * m_rB.y * iB; ey.x = -m_rA.y * m_rA.x * iA - m_rB.y * m_rB.x * iB; ez.x = -m_rA.y * iA - m_rB.y * iB; ex.y = ey.x; ey.y = mA + mB + m_rA.x * m_rA.x * iA + m_rB.x * m_rB.x * iB; ez.y = m_rA.x * iA + m_rB.x * iB; ex.z = ez.x; ey.z = ez.y; ez.z = iA + iB; b2Mat33 K = new b2Mat33(ex, ey, ez); if (m_frequencyHz > 0.0f) { m_mass = K.GetInverse22(m_mass); float invM = iA + iB; float m = invM > 0.0f ? 1.0f / invM : 0.0f; float C = aB - aA - m_referenceAngle; // Frequency float omega = 2.0f * b2Settings.b2_pi * m_frequencyHz; // Damping coefficient float d = 2.0f * m * m_dampingRatio * omega; // Spring stiffness float k = m * omega * omega; // magic formulas float h = data.step.dt; m_gamma = h * (d + h * k); m_gamma = m_gamma != 0.0f ? 1.0f / m_gamma : 0.0f; m_bias = C * h * k * m_gamma; invM += m_gamma; m_mass.ezz = invM != 0.0f ? 1.0f / invM : 0.0f; } else { m_mass = K.GetSymInverse33(m_mass); m_gamma = 0.0f; m_bias = 0.0f; } if (data.step.warmStarting) { // Scale impulses to support a variable time step. m_impulse *= data.step.dtRatio; b2Vec2 P = new b2Vec2(m_impulse.x, m_impulse.y); vA -= mA * P; wA -= iA * (b2Math.b2Cross(m_rA, P) + m_impulse.z); vB += mB * P; wB += iB * (b2Math.b2Cross(m_rB, P) + m_impulse.z); } else { m_impulse.SetZero(); } m_bodyA.InternalVelocity.v = vA; m_bodyA.InternalVelocity.w = wA; m_bodyB.InternalVelocity.v = vB; m_bodyB.InternalVelocity.w = wB; }
public override void InitVelocityConstraints(b2SolverData data) { m_indexA = m_bodyA.IslandIndex; m_indexB = m_bodyB.IslandIndex; m_localCenterA = m_bodyA.Sweep.localCenter; m_localCenterB = m_bodyB.Sweep.localCenter; m_invMassA = m_bodyA.InvertedMass; m_invMassB = m_bodyB.InvertedMass; m_invIA = m_bodyA.InvertedI; m_invIB = m_bodyB.InvertedI; b2Vec2 cA = m_bodyA.InternalPosition.c; float aA = m_bodyA.InternalPosition.a; b2Vec2 vA = m_bodyA.InternalVelocity.v; float wA = m_bodyA.InternalVelocity.w; b2Vec2 cB = m_bodyB.InternalPosition.c; float aB = m_bodyB.InternalPosition.a; b2Vec2 vB = m_bodyB.InternalVelocity.v; float wB = m_bodyB.InternalVelocity.w; b2Rot qA = new b2Rot(aA); b2Rot qB = new b2Rot(aB); m_rA = b2Math.b2Mul(qA, m_localAnchorA - m_localCenterA); m_rB = b2Math.b2Mul(qB, m_localAnchorB - m_localCenterB); m_u = cB + m_rB - cA - m_rA; m_length = m_u.Length; float C = m_length - m_maxLength; if (C > 0.0f) { m_state = b2LimitState.e_atUpperLimit; } else { m_state = b2LimitState.e_inactiveLimit; } if (m_length > b2Settings.b2_linearSlop) { m_u *= 1.0f / m_length; } else { m_u.SetZero(); m_mass = 0.0f; m_impulse = 0.0f; return; } // Compute effective mass. float crA = b2Math.b2Cross(m_rA, m_u); float crB = b2Math.b2Cross(m_rB, m_u); float invMass = m_invMassA + m_invIA * crA * crA + m_invMassB + m_invIB * crB * crB; m_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f; if (data.step.warmStarting) { // Scale the impulse to support a variable time step. m_impulse *= data.step.dtRatio; b2Vec2 P = m_impulse * m_u; vA -= m_invMassA * P; wA -= m_invIA * b2Math.b2Cross(m_rA, P); vB += m_invMassB * P; wB += m_invIB * b2Math.b2Cross(m_rB, P); } else { m_impulse = 0.0f; } m_bodyA.InternalVelocity.v = vA; m_bodyA.InternalVelocity.w = wA; m_bodyB.InternalVelocity.v = vB; m_bodyB.InternalVelocity.w = wB; }
public override bool SolvePositionConstraints(b2SolverData data) { b2Vec2 cA = data.positions[m_indexA].c; float aA = data.positions[m_indexA].a; b2Vec2 cB = data.positions[m_indexB].c; float aB = data.positions[m_indexB].a; b2Rot qA = new b2Rot(aA); b2Rot qB = new b2Rot(aB); float mA = InvertedMassA, mB = InvertedMassB; float iA = InvertedIA, iB = InvertedIB; // Compute fresh Jacobians b2Vec2 rA = b2Math.b2Mul(qA, m_localAnchorA - m_localCenterA); b2Vec2 rB = b2Math.b2Mul(qB, m_localAnchorB - m_localCenterB); b2Vec2 d = cB + rB - cA - rA; b2Vec2 axis = b2Math.b2Mul(qA, m_localXAxisA); float a1 = b2Math.b2Cross(d + rA, axis); float a2 = b2Math.b2Cross(rB, axis); b2Vec2 perp = b2Math.b2Mul(qA, m_localYAxisA); float s1 = b2Math.b2Cross(d + rA, perp); float s2 = b2Math.b2Cross(rB, perp); b2Vec3 impulse; b2Vec2 C1 = new b2Vec2(); C1.x = b2Math.b2Dot(perp, d); C1.y = aB - aA - m_referenceAngle; float linearError = b2Math.b2Abs(C1.x); float angularError = b2Math.b2Abs(C1.y); bool active = false; float C2 = 0.0f; if (m_enableLimit) { float translation = b2Math.b2Dot(axis, d); if (b2Math.b2Abs(m_upperTranslation - m_lowerTranslation) < 2.0f * b2Settings.b2_linearSlop) { // Prevent large angular corrections C2 = b2Math.b2Clamp(translation, -b2Settings.b2_maxLinearCorrection, b2Settings.b2_maxLinearCorrection); linearError = Math.Max(linearError, b2Math.b2Abs(translation)); active = true; } else if (translation <= m_lowerTranslation) { // Prevent large linear corrections and allow some slop. C2 = b2Math.b2Clamp(translation - m_lowerTranslation + b2Settings.b2_linearSlop, -b2Settings.b2_maxLinearCorrection, 0.0f); linearError = Math.Max(linearError, m_lowerTranslation - translation); active = true; } else if (translation >= m_upperTranslation) { // Prevent large linear corrections and allow some slop. C2 = b2Math.b2Clamp(translation - m_upperTranslation - b2Settings.b2_linearSlop, 0.0f, b2Settings.b2_maxLinearCorrection); linearError = Math.Max(linearError, translation - m_upperTranslation); active = true; } } if (active) { float k11 = mA + mB + iA * s1 * s1 + iB * s2 * s2; float k12 = iA * s1 + iB * s2; float k13 = iA * s1 * a1 + iB * s2 * a2; float k22 = iA + iB; if (k22 == 0.0f) { // For fixed rotation k22 = 1.0f; } float k23 = iA * a1 + iB * a2; float k33 = mA + mB + iA * a1 * a1 + iB * a2 * a2; b2Mat33 K = new b2Mat33( new b2Vec3(k11, k12, k13), new b2Vec3(k12, k22, k23), new b2Vec3(k13, k23, k33)); b2Vec3 C = new b2Vec3(C1.x, C1.y, C2); impulse = K.Solve33(-C); } else { float k11 = mA + mB + iA * s1 * s1 + iB * s2 * s2; float k12 = iA * s1 + iB * s2; float k22 = iA + iB; if (k22 == 0.0f) { k22 = 1.0f; } b2Mat22 K = new b2Mat22(); K.ex.Set(k11, k12); K.ey.Set(k12, k22); b2Vec2 impulse1 = K.Solve(-C1); impulse = new b2Vec3(); impulse.x = impulse1.x; impulse.y = impulse1.y; impulse.z = 0.0f; } b2Vec2 P = impulse.x * perp + impulse.z * axis; float LA = impulse.x * s1 + impulse.y + impulse.z * a1; float LB = impulse.x * s2 + impulse.y + impulse.z * a2; cA -= mA * P; aA -= iA * LA; cB += mB * P; aB += iB * LB; data.positions[m_indexA].c = cA; data.positions[m_indexA].a = aA; data.positions[m_indexB].c = cB; data.positions[m_indexB].a = aB; return linearError <= b2Settings.b2_linearSlop && angularError <= b2Settings.b2_angularSlop; }
public override void InitVelocityConstraints(b2SolverData data) { m_indexB = m_bodyB.IslandIndex; m_localCenterB = m_bodyB.Sweep.localCenter; m_invMassB = m_bodyB.InvertedMass; m_invIB = m_bodyB.InvertedI; b2Vec2 cB = data.positions[m_indexB].c; float aB = data.positions[m_indexB].a; b2Vec2 vB = data.velocities[m_indexB].v; float wB = data.velocities[m_indexB].w; b2Rot qB = new b2Rot(aB); float mass = m_bodyB.Mass; // Frequency float omega = 2.0f * b2Settings.b2_pi * m_frequencyHz; // Damping coefficient float d = 2.0f * mass * m_dampingRatio * omega; // Spring stiffness float k = mass * (omega * omega); // magic formulas // gamma has units of inverse mass. // beta has units of inverse time. float h = data.step.dt; Debug.Assert(d + h * k > b2Settings.b2_epsilon); m_gamma = h * (d + h * k); if (m_gamma != 0.0f) { m_gamma = 1.0f / m_gamma; } m_beta = h * k * m_gamma; // Compute the effective mass matrix. m_rB = b2Math.b2Mul(qB, m_localAnchorB - m_localCenterB); // K = [(1/m1 + 1/m2) * eye(2) - skew(r1) * invI1 * skew(r1) - skew(r2) * invI2 * skew(r2)] // = [1/m1+1/m2 0 ] + invI1 * [r1.y*r1.y -r1.x*r1.y] + invI2 * [r1.y*r1.y -r1.x*r1.y] // [ 0 1/m1+1/m2] [-r1.x*r1.y r1.x*r1.x] [-r1.x*r1.y r1.x*r1.x] b2Mat22 K = new b2Mat22(); K.exx = m_invMassB + m_invIB * m_rB.y * m_rB.y + m_gamma; K.exy = -m_invIB * m_rB.x * m_rB.y; K.eyx = K.ex.y; K.eyy = m_invMassB + m_invIB * m_rB.x * m_rB.x + m_gamma; m_mass = K.GetInverse(); m_C = cB + m_rB - m_targetA; m_C *= m_beta; // Cheat with some damping wB *= 0.98f; if (data.step.warmStarting) { m_impulse *= data.step.dtRatio; vB += m_invMassB * m_impulse; wB += m_invIB * b2Math.b2Cross(m_rB, m_impulse); } else { m_impulse.SetZero(); } data.velocities[m_indexB].v = vB; data.velocities[m_indexB].w = wB; }
public override void InitVelocityConstraints(b2SolverData data) { m_indexA = m_bodyA.IslandIndex; m_indexB = m_bodyB.IslandIndex; m_localCenterA = m_bodyA.Sweep.localCenter; m_localCenterB = m_bodyB.Sweep.localCenter; InvertedMassA = m_bodyA.InvertedMass; InvertedMassB = m_bodyB.InvertedMass; InvertedIA = m_bodyA.InvertedI; InvertedIB = m_bodyB.InvertedI; b2Vec2 cA = data.positions[m_indexA].c; float aA = data.positions[m_indexA].a; b2Vec2 vA = data.velocities[m_indexA].v; float wA = data.velocities[m_indexA].w; b2Vec2 cB = data.positions[m_indexB].c; float aB = data.positions[m_indexB].a; b2Vec2 vB = data.velocities[m_indexB].v; float wB = data.velocities[m_indexB].w; b2Rot qA = new b2Rot(aA); b2Rot qB = new b2Rot(aB); // Compute the effective masses. b2Vec2 rA = b2Math.b2Mul(qA, m_localAnchorA - m_localCenterA); b2Vec2 rB = b2Math.b2Mul(qB, m_localAnchorB - m_localCenterB); b2Vec2 d = (cB - cA) + rB - rA; float mA = InvertedMassA, mB = InvertedMassB; float iA = InvertedIA, iB = InvertedIB; // Compute motor Jacobian and effective mass. { m_axis = b2Math.b2Mul(qA, m_localXAxisA); m_a1 = b2Math.b2Cross(d + rA, m_axis); m_a2 = b2Math.b2Cross(rB, m_axis); m_motorMass = mA + mB + iA * m_a1 * m_a1 + iB * m_a2 * m_a2; if (m_motorMass > 0.0f) { m_motorMass = 1.0f / m_motorMass; } } // Prismatic constraint. { m_perp = b2Math.b2Mul(qA, m_localYAxisA); m_s1 = b2Math.b2Cross(d + rA, m_perp); m_s2 = b2Math.b2Cross(rB, m_perp); float k11 = mA + mB + iA * m_s1 * m_s1 + iB * m_s2 * m_s2; float k12 = iA * m_s1 + iB * m_s2; float k13 = iA * m_s1 * m_a1 + iB * m_s2 * m_a2; float k22 = iA + iB; if (k22 == 0.0f) { // For bodies with fixed rotation. k22 = 1.0f; } float k23 = iA * m_a1 + iB * m_a2; float k33 = mA + mB + iA * m_a1 * m_a1 + iB * m_a2 * m_a2; m_K.ex.Set(k11, k12, k13); m_K.ey.Set(k12, k22, k23); m_K.ez.Set(k13, k23, k33); } // Compute motor and limit terms. if (m_enableLimit) { float jointTranslation = b2Math.b2Dot(m_axis, d); if (b2Math.b2Abs(m_upperTranslation - m_lowerTranslation) < 2.0f * b2Settings.b2_linearSlop) { m_limitState = b2LimitState.e_equalLimits; } else if (jointTranslation <= m_lowerTranslation) { if (m_limitState != b2LimitState.e_atLowerLimit) { m_limitState = b2LimitState.e_atLowerLimit; m_impulse.z = 0.0f; } } else if (jointTranslation >= m_upperTranslation) { if (m_limitState != b2LimitState.e_atUpperLimit) { m_limitState = b2LimitState.e_atUpperLimit; m_impulse.z = 0.0f; } } else { m_limitState = b2LimitState.e_inactiveLimit; m_impulse.z = 0.0f; } } else { m_limitState = b2LimitState.e_inactiveLimit; m_impulse.z = 0.0f; } if (m_enableMotor == false) { m_motorImpulse = 0.0f; } if (data.step.warmStarting) { // Account for variable time step. m_impulse *= data.step.dtRatio; m_motorImpulse *= data.step.dtRatio; b2Vec2 P = m_impulse.x * m_perp + (m_motorImpulse + m_impulse.z) * m_axis; float LA = m_impulse.x * m_s1 + m_impulse.y + (m_motorImpulse + m_impulse.z) * m_a1; float LB = m_impulse.x * m_s2 + m_impulse.y + (m_motorImpulse + m_impulse.z) * m_a2; vA -= mA * P; wA -= iA * LA; vB += mB * P; wB += iB * LB; } else { m_impulse.SetZero(); m_motorImpulse = 0.0f; } data.velocities[m_indexA].v = vA; data.velocities[m_indexA].w = wA; data.velocities[m_indexB].v = vB; data.velocities[m_indexB].w = wB; }
public override bool SolvePositionConstraints(b2SolverData data) { b2Vec2 cA = data.positions[m_indexA].c; float aA = data.positions[m_indexA].a; b2Vec2 cB = data.positions[m_indexB].c; float aB = data.positions[m_indexB].a; b2Rot qA = new b2Rot(aA); b2Rot qB = new b2Rot(aB); b2Vec2 rA = b2Math.b2Mul(qA, m_localAnchorA - m_localCenterA); b2Vec2 rB = b2Math.b2Mul(qB, m_localAnchorB - m_localCenterB); b2Vec2 d = (cB - cA) + rB - rA; b2Vec2 ay = b2Math.b2Mul(qA, m_localYAxisA); float sAy = b2Math.b2Cross(d + rA, ay); float sBy = b2Math.b2Cross(rB, ay); float C = b2Math.b2Dot(d, ay); float k = m_invMassA + m_invMassB + m_invIA * m_sAy * m_sAy + m_invIB * m_sBy * m_sBy; float impulse; if (k != 0.0f) { impulse = -C / k; } else { impulse = 0.0f; } b2Vec2 P = impulse * ay; float LA = impulse * sAy; float LB = impulse * sBy; cA -= m_invMassA * P; aA -= m_invIA * LA; cB += m_invMassB * P; aB += m_invIB * LB; data.positions[m_indexA].c = cA; data.positions[m_indexA].a = aA; data.positions[m_indexB].c = cB; data.positions[m_indexB].a = aB; return b2Math.b2Abs(C) <= b2Settings.b2_linearSlop; }
public override void InitVelocityConstraints(b2SolverData data) { m_indexA = m_bodyA.IslandIndex; m_indexB = m_bodyB.IslandIndex; m_localCenterA = m_bodyA.Sweep.localCenter; m_localCenterB = m_bodyB.Sweep.localCenter; m_invMassA = m_bodyA.InvertedMass; m_invMassB = m_bodyB.InvertedMass; m_invIA = m_bodyA.InvertedI; m_invIB = m_bodyB.InvertedI; float mA = m_invMassA, mB = m_invMassB; float iA = m_invIA, iB = m_invIB; b2Vec2 cA = data.positions[m_indexA].c; float aA = data.positions[m_indexA].a; b2Vec2 vA = data.velocities[m_indexA].v; float wA = data.velocities[m_indexA].w; b2Vec2 cB = data.positions[m_indexB].c; float aB = data.positions[m_indexB].a; b2Vec2 vB = data.velocities[m_indexB].v; float wB = data.velocities[m_indexB].w; b2Rot qA = new b2Rot(aA); b2Rot qB = new b2Rot(aB); // Compute the effective masses. b2Vec2 rA = b2Math.b2Mul(qA, m_localAnchorA - m_localCenterA); b2Vec2 rB = b2Math.b2Mul(qB, m_localAnchorB - m_localCenterB); b2Vec2 d = cB + rB - cA - rA; // Point to line raint { m_ay = b2Math.b2Mul(qA, m_localYAxisA); m_sAy = b2Math.b2Cross(d + rA, m_ay); m_sBy = b2Math.b2Cross(rB, m_ay); m_mass = mA + mB + iA * m_sAy * m_sAy + iB * m_sBy * m_sBy; if (m_mass > 0.0f) { m_mass = 1.0f / m_mass; } } // Spring raint m_springMass = 0.0f; m_bias = 0.0f; m_gamma = 0.0f; if (m_frequencyHz > 0.0f) { m_ax = b2Math.b2Mul(qA, m_localXAxisA); m_sAx = b2Math.b2Cross(d + rA, m_ax); m_sBx = b2Math.b2Cross(rB, m_ax); float invMass = mA + mB + iA * m_sAx * m_sAx + iB * m_sBx * m_sBx; if (invMass > 0.0f) { m_springMass = 1.0f / invMass; float C = b2Math.b2Dot(d, m_ax); // Frequency float omega = 2.0f * (float)Math.PI * m_frequencyHz; // Damping coefficient float dx = 2.0f * m_springMass * m_dampingRatio * omega; // Spring stiffness float k = m_springMass * omega * omega; // magic formulas float h = data.step.dt; m_gamma = h * (dx + h * k); if (m_gamma > 0.0f) { m_gamma = 1.0f / m_gamma; } m_bias = C * h * k * m_gamma; m_springMass = invMass + m_gamma; if (m_springMass > 0.0f) { m_springMass = 1.0f / m_springMass; } } } else { m_springImpulse = 0.0f; } // Rotational motor if (m_enableMotor) { m_motorMass = iA + iB; if (m_motorMass > 0.0f) { m_motorMass = 1.0f / m_motorMass; } } else { m_motorMass = 0.0f; m_motorImpulse = 0.0f; } if (data.step.warmStarting) { // Account for variable time step. m_impulse *= data.step.dtRatio; m_springImpulse *= data.step.dtRatio; m_motorImpulse *= data.step.dtRatio; b2Vec2 P = m_impulse * m_ay + m_springImpulse * m_ax; float LA = m_impulse * m_sAy + m_springImpulse * m_sAx + m_motorImpulse; float LB = m_impulse * m_sBy + m_springImpulse * m_sBx + m_motorImpulse; vA -= m_invMassA * P; wA -= m_invIA * LA; vB += m_invMassB * P; wB += m_invIB * LB; } else { m_impulse = 0.0f; m_springImpulse = 0.0f; m_motorImpulse = 0.0f; } data.velocities[m_indexA].v = vA; data.velocities[m_indexA].w = wA; data.velocities[m_indexB].v = vB; data.velocities[m_indexB].w = wB; }
/// Inverse rotate a vector public static b2Vec2 b2MulT(b2Rot q, b2Vec2 v) { return(new b2Vec2(q.c * v.x + q.s * v.y, -q.s * v.x + q.c * v.y)); }
public override void InitVelocityConstraints(b2SolverData data) { m_indexA = m_bodyA.IslandIndex; m_indexB = m_bodyB.IslandIndex; m_localCenterA = m_bodyA.Sweep.localCenter; m_localCenterB = m_bodyB.Sweep.localCenter; m_invMassA = m_bodyA.InvertedMass; m_invMassB = m_bodyB.InvertedMass; m_invIA = m_bodyA.InvertedI; m_invIB = m_bodyB.InvertedI; b2Vec2 cA = m_bodyA.InternalPosition.c; float aA = m_bodyA.InternalPosition.a; b2Vec2 vA = m_bodyA.InternalVelocity.v; float wA = m_bodyA.InternalVelocity.w; b2Vec2 cB = m_bodyB.InternalPosition.c; float aB = m_bodyB.InternalPosition.a; b2Vec2 vB = m_bodyB.InternalVelocity.v; float wB = m_bodyB.InternalVelocity.w; b2Rot qA = new b2Rot(aA); b2Rot qB = new b2Rot(aB); m_rA = b2Math.b2Mul(qA, m_localAnchorA - m_localCenterA); m_rB = b2Math.b2Mul(qB, m_localAnchorB - m_localCenterB); // Get the pulley axes. m_uA = cA + m_rA - m_groundAnchorA; m_uB = cB + m_rB - m_groundAnchorB; float lengthA = m_uA.Length; float lengthB = m_uB.Length; if (lengthA > 10.0f * b2Settings.b2_linearSlop) { m_uA *= 1.0f / lengthA; } else { m_uA.SetZero(); } if (lengthB > 10.0f * b2Settings.b2_linearSlop) { m_uB *= 1.0f / lengthB; } else { m_uB.SetZero(); } // Compute effective mass. float ruA = b2Math.b2Cross(m_rA, m_uA); float ruB = b2Math.b2Cross(m_rB, m_uB); float mA = m_invMassA + m_invIA * ruA * ruA; float mB = m_invMassB + m_invIB * ruB * ruB; m_mass = mA + m_ratio * m_ratio * mB; if (m_mass > 0.0f) { m_mass = 1.0f / m_mass; } if (data.step.warmStarting) { // Scale impulses to support variable time steps. m_impulse *= data.step.dtRatio; // Warm starting. b2Vec2 PA = -(m_impulse) * m_uA; b2Vec2 PB = (-m_ratio * m_impulse) * m_uB; vA += m_invMassA * PA; wA += m_invIA * b2Math.b2Cross(m_rA, PA); vB += m_invMassB * PB; wB += m_invIB * b2Math.b2Cross(m_rB, PB); } else { m_impulse = 0.0f; } m_bodyA.InternalVelocity.v = vA; m_bodyA.InternalVelocity.w = wA; m_bodyB.InternalVelocity.v = vB; m_bodyB.InternalVelocity.w = wB; }
/// <summary> /// Actualizamos las imagenes de los cuerpos con las fisicas /// </summary> public virtual void OnSetImagePositionsFromPhysicsBodies() { foreach (var imgInfo in m_imageInfos) { if (imgInfo != null) { var pos = imgInfo.Center; float angle = -imgInfo.Angle; if (imgInfo.Body != null) { //need to rotate image local center by body angle b2Vec2 localPos = new b2Vec2(pos.x, pos.y); b2Rot rot = new b2Rot(imgInfo.Body.Angle); localPos = CCPointExHelper.b2Mul(rot, localPos) + imgInfo.Body.Position; pos.x = localPos.x; pos.y = localPos.y; angle += -imgInfo.Body.Angle; } imgInfo.Sprite.Rotation = CCMathHelper.ToDegrees(angle); imgInfo.Sprite.Position = new CCPoint(pos.x, pos.y); } } }
public override bool SolvePositionConstraints(b2SolverData data) { b2Vec2 cA = m_bodyA.InternalPosition.c; float aA = m_bodyA.InternalPosition.a; b2Vec2 cB = m_bodyB.InternalPosition.c; float aB = m_bodyB.InternalPosition.a; b2Rot qA = new b2Rot(aA); b2Rot qB = new b2Rot(aB); b2Vec2 rA = b2Math.b2Mul(qA, m_localAnchorA - m_localCenterA); b2Vec2 rB = b2Math.b2Mul(qB, m_localAnchorB - m_localCenterB); b2Vec2 u = cB + rB - cA - rA; float length = u.Normalize(); float C = length - m_maxLength; C = b2Math.b2Clamp(C, 0.0f, b2Settings.b2_maxLinearCorrection); float impulse = -m_mass * C; b2Vec2 P = impulse * u; cA -= m_invMassA * P; aA -= m_invIA * b2Math.b2Cross(rA, P); cB += m_invMassB * P; aB += m_invIB * b2Math.b2Cross(rB, P); m_bodyA.InternalPosition.c = cA; m_bodyA.InternalPosition.a = aA; m_bodyB.InternalPosition.c = cB; m_bodyB.InternalPosition.a = aB; return length - m_maxLength < b2Settings.b2_linearSlop; }
public static b2Rot Create() { var rot = new b2Rot(); rot.SetIdentity(); return rot; }
public override bool SolvePositionConstraints(b2SolverData data) { b2Vec2 cA = m_bodyA.InternalPosition.c; float aA = m_bodyA.InternalPosition.a; b2Vec2 cB = m_bodyB.InternalPosition.c; float aB = m_bodyB.InternalPosition.a; b2Rot qA = new b2Rot(aA); b2Rot qB = new b2Rot(aB); float mA = m_invMassA, mB = m_invMassB; float iA = m_invIA, iB = m_invIB; b2Vec2 rA = b2Math.b2Mul(qA, m_localAnchorA - m_localCenterA); b2Vec2 rB = b2Math.b2Mul(qB, m_localAnchorB - m_localCenterB); float positionError, angularError; b2Vec3 ex = new b2Vec3(); b2Vec3 ey = new b2Vec3(); b2Vec3 ez = new b2Vec3(); ex.x = mA + mB + rA.y * rA.y * iA + rB.y * rB.y * iB; ey.x = -rA.y * rA.x * iA - rB.y * rB.x * iB; ez.x = -rA.y * iA - rB.y * iB; ex.y = ey.x; ey.y = mA + mB + rA.x * rA.x * iA + rB.x * rB.x * iB; ez.y = rA.x * iA + rB.x * iB; ex.z = ez.x; ey.z = ez.y; ez.z = iA + iB; b2Mat33 K = new b2Mat33(ex, ey, ez); if (m_frequencyHz > 0.0f) { b2Vec2 C1 = cB + rB - cA - rA; positionError = C1.Length; angularError = 0.0f; b2Vec2 P = -K.Solve22(C1); cA -= mA * P; aA -= iA * b2Math.b2Cross(rA, P); cB += mB * P; aB += iB * b2Math.b2Cross(rB, P); } else { b2Vec2 C1 = cB + rB - cA - rA; float C2 = aB - aA - m_referenceAngle; positionError = C1.Length; angularError = b2Math.b2Abs(C2); b2Vec3 C = new b2Vec3(C1.x, C1.y, C2); b2Vec3 impulse = -K.Solve33(C); b2Vec2 P = new b2Vec2(impulse.x, impulse.y); cA -= mA * P; aA -= iA * (b2Math.b2Cross(rA, P) + impulse.z); cB += mB * P; aB += iB * (b2Math.b2Cross(rB, P) + impulse.z); } m_bodyA.InternalPosition.c = cA; m_bodyA.InternalPosition.a = aA; m_bodyB.InternalPosition.c = cB; m_bodyB.InternalPosition.a = aB; return positionError <= b2Settings.b2_linearSlop && angularError <= b2Settings.b2_angularSlop; }
public override bool SolvePositionConstraints(b2SolverData data) { if (m_frequencyHz > 0.0f) { // There is no position correction for soft distance constraints. return true; } b2Vec2 cA = m_bodyA.InternalPosition.c; float aA = m_bodyA.InternalPosition.a; b2Vec2 cB = m_bodyB.InternalPosition.c; float aB = m_bodyB.InternalPosition.a; b2Rot qA = new b2Rot(aA); b2Rot qB = new b2Rot(aB); b2Vec2 rA = b2Math.b2Mul(qA, m_localAnchorA - m_localCenterA); b2Vec2 rB = b2Math.b2Mul(qB, m_localAnchorB - m_localCenterB); b2Vec2 u = cB + rB - cA - rA; float length = u.Normalize(); float C = length - m_length; C = b2Math.b2Clamp(C, -b2Settings.b2_maxLinearCorrection, b2Settings.b2_maxLinearCorrection); float impulse = -m_mass * C; b2Vec2 P = impulse * u; cA -= m_invMassA * P; aA -= m_invIA * b2Math.b2Cross(ref rA, ref P); cB += m_invMassB * P; aB += m_invIB * b2Math.b2Cross(ref rB, ref P); m_bodyA.InternalPosition.c = cA; m_bodyA.InternalPosition.a = aA; m_bodyB.InternalPosition.c = cB; m_bodyB.InternalPosition.a = aB; return b2Math.b2Abs(C) < b2Settings.b2_linearSlop; }
public override void InitVelocityConstraints(b2SolverData data) { m_indexA = m_bodyA.IslandIndex; m_indexB = m_bodyB.IslandIndex; m_localCenterA = m_bodyA.Sweep.localCenter; m_localCenterB = m_bodyB.Sweep.localCenter; m_invMassA = m_bodyA.InvertedMass; m_invMassB = m_bodyB.InvertedMass; m_invIA = m_bodyA.InvertedI; m_invIB = m_bodyB.InvertedI; float aA = m_bodyA.InternalPosition.a; b2Vec2 vA = m_bodyA.InternalVelocity.v; float wA = m_bodyA.InternalVelocity.w; float aB = m_bodyB.InternalPosition.a; b2Vec2 vB = m_bodyB.InternalVelocity.v; float wB = m_bodyB.InternalVelocity.w; b2Rot qA = new b2Rot(aA); b2Rot qB = new b2Rot(aB); // Compute the effective mass matrix. m_rA = b2Math.b2Mul(qA, m_localAnchorA - m_localCenterA); m_rB = b2Math.b2Mul(qB, m_localAnchorB - m_localCenterB); // J = [-I -r1_skew I r2_skew] // [ 0 -1 0 1] // r_skew = [-ry; rx] // Matlab // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB] // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB] // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB] float mA = m_invMassA, mB = m_invMassB; float iA = m_invIA, iB = m_invIB; b2Mat22 K = new b2Mat22(); K.exx = mA + mB + iA * m_rA.y * m_rA.y + iB * m_rB.y * m_rB.y; K.exy = -iA * m_rA.x * m_rA.y - iB * m_rB.x * m_rB.y; K.eyx = K.ex.y; K.eyy = mA + mB + iA * m_rA.x * m_rA.x + iB * m_rB.x * m_rB.x; m_linearMass = K.GetInverse(); m_angularMass = iA + iB; if (m_angularMass > 0.0f) { m_angularMass = 1.0f / m_angularMass; } if (data.step.warmStarting) { // Scale impulses to support a variable time step. m_linearImpulse *= data.step.dtRatio; m_angularImpulse *= data.step.dtRatio; b2Vec2 P = new b2Vec2(m_linearImpulse.x, m_linearImpulse.y); vA -= mA * P; wA -= iA * (b2Math.b2Cross(m_rA, P) + m_angularImpulse); vB += mB * P; wB += iB * (b2Math.b2Cross(m_rB, P) + m_angularImpulse); } else { m_linearImpulse.SetZero(); m_angularImpulse = 0.0f; } m_bodyA.InternalVelocity.v = vA; m_bodyA.InternalVelocity.w = wA; m_bodyB.InternalVelocity.v = vB; m_bodyB.InternalVelocity.w = wB; }
public override void InitVelocityConstraints(b2SolverData data) { m_indexA = m_bodyA.IslandIndex; m_indexB = m_bodyB.IslandIndex; m_localCenterA = m_bodyA.Sweep.localCenter; m_localCenterB = m_bodyB.Sweep.localCenter; m_invMassA = m_bodyA.InvertedMass; m_invMassB = m_bodyB.InvertedMass; m_invIA = m_bodyA.InvertedI; m_invIB = m_bodyB.InvertedI; b2Vec2 cA = m_bodyA.InternalPosition.c; float aA = m_bodyA.InternalPosition.a; b2Vec2 vA = m_bodyA.InternalVelocity.v; float wA = m_bodyA.InternalVelocity.w; b2Vec2 cB = m_bodyB.InternalPosition.c; float aB = m_bodyB.InternalPosition.a; b2Vec2 vB = m_bodyB.InternalVelocity.v; float wB = m_bodyB.InternalVelocity.w; b2Rot qA = new b2Rot(aA); b2Rot qB = new b2Rot(aB); m_rA = b2Math.b2Mul(qA, m_localAnchorA - m_localCenterA); m_rB = b2Math.b2Mul(qB, m_localAnchorB - m_localCenterB); m_u = cB + m_rB - cA - m_rA; // Handle singularity. float length = m_u.Length; if (length > b2Settings.b2_linearSlop) { m_u *= 1.0f / length; } else { m_u.Set(0.0f, 0.0f); } float crAu = b2Math.b2Cross(ref m_rA, ref m_u); float crBu = b2Math.b2Cross(ref m_rB, ref m_u); float invMass = m_invMassA + m_invIA * crAu * crAu + m_invMassB + m_invIB * crBu * crBu; // Compute the effective mass matrix. m_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f; if (m_frequencyHz > 0.0f) { float C = length - m_length; // Frequency float omega = 2.0f * (float)Math.PI * m_frequencyHz; // Damping coefficient float d = 2.0f * m_mass * m_dampingRatio * omega; // Spring stiffness float k = m_mass * omega * omega; // magic formulas float h = data.step.dt; m_gamma = h * (d + h * k); m_gamma = m_gamma != 0.0f ? 1.0f / m_gamma : 0.0f; m_bias = C * h * k * m_gamma; invMass += m_gamma; m_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f; } else { m_gamma = 0.0f; m_bias = 0.0f; } if (data.step.warmStarting) { // Scale the impulse to support a variable time step. m_impulse *= data.step.dtRatio; b2Vec2 P = m_impulse * m_u; vA -= m_invMassA * P; wA -= m_invIA * b2Math.b2Cross(ref m_rA, ref P); vB += m_invMassB * P; wB += m_invIB * b2Math.b2Cross(ref m_rB, ref P); } else { m_impulse = 0.0f; } m_bodyA.InternalVelocity.v = vA; m_bodyA.InternalVelocity.w = wA; m_bodyB.InternalVelocity.v = vB; m_bodyB.InternalVelocity.w = wB; }
public override bool SolvePositionConstraints(b2SolverData data) { b2Vec2 cA = data.positions[m_indexA].c; float aA = data.positions[m_indexA].a; b2Vec2 cB = data.positions[m_indexB].c; float aB = data.positions[m_indexB].a; b2Rot qA = new b2Rot(aA); b2Rot qB = new b2Rot(aB); float angularError = 0.0f; float positionError = 0.0f; bool fixedRotation = (m_invIA + m_invIB == 0.0f); // Solve angular limit constraint. if (m_enableLimit && m_limitState != b2LimitState.e_inactiveLimit && fixedRotation == false) { float angle = aB - aA - m_referenceAngle; float limitImpulse = 0.0f; if (m_limitState == b2LimitState.e_equalLimits) { // Prevent large angular corrections float C = b2Math.b2Clamp(angle - m_lowerAngle, -b2Settings.b2_maxAngularCorrection, b2Settings.b2_maxAngularCorrection); limitImpulse = -m_motorMass * C; angularError = b2Math.b2Abs(C); } else if (m_limitState == b2LimitState.e_atLowerLimit) { float C = angle - m_lowerAngle; angularError = -C; // Prevent large angular corrections and allow some slop. C = b2Math.b2Clamp(C + b2Settings.b2_angularSlop, -b2Settings.b2_maxAngularCorrection, 0.0f); limitImpulse = -m_motorMass * C; } else if (m_limitState == b2LimitState.e_atUpperLimit) { float C = angle - m_upperAngle; angularError = C; // Prevent large angular corrections and allow some slop. C = b2Math.b2Clamp(C - b2Settings.b2_angularSlop, 0.0f, b2Settings.b2_maxAngularCorrection); limitImpulse = -m_motorMass * C; } aA -= m_invIA * limitImpulse; aB += m_invIB * limitImpulse; } // Solve point-to-point constraint. { qA.Set(aA); qB.Set(aB); b2Vec2 rA = b2Math.b2Mul(qA, m_localAnchorA - m_localCenterA); b2Vec2 rB = b2Math.b2Mul(qB, m_localAnchorB - m_localCenterB); b2Vec2 C = cB + rB - cA - rA; positionError = C.Length(); float mA = m_invMassA, mB = m_invMassB; float iA = m_invIA, iB = m_invIB; b2Mat22 K = new b2Mat22(); K.exx = mA + mB + iA * rA.y * rA.y + iB * rB.y * rB.y; K.exy = -iA * rA.x * rA.y - iB * rB.x * rB.y; K.eyx = K.ex.y; K.eyy = mA + mB + iA * rA.x * rA.x + iB * rB.x * rB.x; b2Vec2 impulse = -K.Solve(C); cA -= mA * impulse; aA -= iA * b2Math.b2Cross(rA, impulse); cB += mB * impulse; aB += iB * b2Math.b2Cross(rB, impulse); } data.positions[m_indexA].c = cA; data.positions[m_indexA].a = aA; data.positions[m_indexB].c = cB; data.positions[m_indexB].a = aB; return positionError <= b2Settings.b2_linearSlop && angularError <= b2Settings.b2_angularSlop; }
public override void InitVelocityConstraints(b2SolverData data) { m_indexA = m_bodyA.IslandIndex; m_indexB = m_bodyB.IslandIndex; m_indexC = m_bodyC.IslandIndex; m_indexD = m_bodyD.IslandIndex; m_lcA = m_bodyA.Sweep.localCenter; m_lcB = m_bodyB.Sweep.localCenter; m_lcC = m_bodyC.Sweep.localCenter; m_lcD = m_bodyD.Sweep.localCenter; m_mA = m_bodyA.InvertedMass; m_mB = m_bodyB.InvertedMass; m_mC = m_bodyC.InvertedMass; m_mD = m_bodyD.InvertedMass; m_iA = m_bodyA.InvertedI; m_iB = m_bodyB.InvertedI; m_iC = m_bodyC.InvertedI; m_iD = m_bodyD.InvertedI; b2Vec2 cA = data.positions[m_indexA].c; float aA = data.positions[m_indexA].a; b2Vec2 vA = data.velocities[m_indexA].v; float wA = data.velocities[m_indexA].w; b2Vec2 cB = data.positions[m_indexB].c; float aB = data.positions[m_indexB].a; b2Vec2 vB = data.velocities[m_indexB].v; float wB = data.velocities[m_indexB].w; b2Vec2 cC = data.positions[m_indexC].c; float aC = data.positions[m_indexC].a; b2Vec2 vC = data.velocities[m_indexC].v; float wC = data.velocities[m_indexC].w; b2Vec2 cD = data.positions[m_indexD].c; float aD = data.positions[m_indexD].a; b2Vec2 vD = data.velocities[m_indexD].v; float wD = data.velocities[m_indexD].w; b2Rot qA = new b2Rot(aA); b2Rot qB = new b2Rot(aB); b2Rot qC = new b2Rot(aC); b2Rot qD = new b2Rot(aD); m_mass = 0.0f; if (m_typeA == b2JointType.e_revoluteJoint) { m_JvAC.SetZero(); m_JwA = 1.0f; m_JwC = 1.0f; m_mass += m_iA + m_iC; } else { b2Vec2 u = b2Math.b2Mul(qC, m_localAxisC); b2Vec2 rC = b2Math.b2Mul(qC, m_localAnchorC - m_lcC); b2Vec2 rA = b2Math.b2Mul(qA, m_localAnchorA - m_lcA); m_JvAC = u; m_JwC = b2Math.b2Cross(rC, u); m_JwA = b2Math.b2Cross(rA, u); m_mass += m_mC + m_mA + m_iC * m_JwC * m_JwC + m_iA * m_JwA * m_JwA; } if (m_typeB == b2JointType.e_revoluteJoint) { m_JvBD.SetZero(); m_JwB = m_ratio; m_JwD = m_ratio; m_mass += m_ratio * m_ratio * (m_iB + m_iD); } else { b2Vec2 u = b2Math.b2Mul(qD, m_localAxisD); b2Vec2 rD = b2Math.b2Mul(qD, m_localAnchorD - m_lcD); b2Vec2 rB = b2Math.b2Mul(qB, m_localAnchorB - m_lcB); m_JvBD = m_ratio * u; m_JwD = m_ratio * b2Math.b2Cross(rD, u); m_JwB = m_ratio * b2Math.b2Cross(rB, u); m_mass += m_ratio * m_ratio * (m_mD + m_mB) + m_iD * m_JwD * m_JwD + m_iB * m_JwB * m_JwB; } // Compute effective mass. m_mass = m_mass > 0.0f ? 1.0f / m_mass : 0.0f; if (data.step.warmStarting) { vA += (m_mA * m_impulse) * m_JvAC; wA += m_iA * m_impulse * m_JwA; vB += (m_mB * m_impulse) * m_JvBD; wB += m_iB * m_impulse * m_JwB; vC -= (m_mC * m_impulse) * m_JvAC; wC -= m_iC * m_impulse * m_JwC; vD -= (m_mD * m_impulse) * m_JvBD; wD -= m_iD * m_impulse * m_JwD; } else { m_impulse = 0.0f; } data.velocities[m_indexA].v = vA; data.velocities[m_indexA].w = wA; data.velocities[m_indexB].v = vB; data.velocities[m_indexB].w = wB; data.velocities[m_indexC].v = vC; data.velocities[m_indexC].w = wC; data.velocities[m_indexD].v = vD; data.velocities[m_indexD].w = wD; }