public BigInteger[] DivideAndRemainder( BigInteger val) { if (val.sign == 0) throw new ArithmeticException("Division by zero error"); BigInteger[] biggies = new BigInteger[2]; if (sign == 0) { biggies[0] = Zero; biggies[1] = Zero; } else if (val.QuickPow2Check()) // val is power of two { int e = val.Abs().BitLength - 1; BigInteger quotient = this.Abs().ShiftRight(e); int[] remainder = this.LastNBits(e); biggies[0] = val.sign == this.sign ? quotient : quotient.Negate(); biggies[1] = new BigInteger(this.sign, remainder, true); } else { int[] remainder = (int[]) this.magnitude.Clone(); int[] quotient = Divide(remainder, val.magnitude); biggies[0] = new BigInteger(this.sign * val.sign, quotient, true); biggies[1] = new BigInteger(this.sign, remainder, true); } return biggies; }
public BigInteger Divide( BigInteger val) { if (val.sign == 0) throw new ArithmeticException("Division by zero error"); if (sign == 0) return Zero; if (val.QuickPow2Check()) // val is power of two { BigInteger result = this.Abs().ShiftRight(val.Abs().BitLength - 1); return val.sign == this.sign ? result : result.Negate(); } int[] mag = (int[]) this.magnitude.Clone(); return new BigInteger(this.sign * val.sign, Divide(mag, val.magnitude), true); }
public BigInteger Multiply( BigInteger val) { if (val == this) return Square(); if ((sign & val.sign) == 0) return Zero; if (val.QuickPow2Check()) // val is power of two { BigInteger result = this.ShiftLeft(val.Abs().BitLength - 1); return val.sign > 0 ? result : result.Negate(); } if (this.QuickPow2Check()) // this is power of two { BigInteger result = val.ShiftLeft(this.Abs().BitLength - 1); return this.sign > 0 ? result : result.Negate(); } int resLength = magnitude.Length + val.magnitude.Length; int[] res = new int[resLength]; Multiply(res, this.magnitude, val.magnitude); int resSign = sign ^ val.sign ^ 1; return new BigInteger(resSign, res, true); }
public BigInteger Remainder( BigInteger n) { if (n.sign == 0) throw new ArithmeticException("Division by zero error"); if (this.sign == 0) return Zero; // For small values, use fast remainder method if (n.magnitude.Length == 1) { int val = n.magnitude[0]; if (val > 0) { if (val == 1) return Zero; // TODO Make this func work on uint, and handle val == 1? int rem = Remainder(val); return rem == 0 ? Zero : new BigInteger(sign, new int[]{ rem }, false); } } if (CompareNoLeadingZeroes(0, magnitude, 0, n.magnitude) < 0) return this; int[] result; if (n.QuickPow2Check()) // n is power of two { // TODO Move before small values branch above? result = LastNBits(n.Abs().BitLength - 1); } else { result = (int[]) this.magnitude.Clone(); result = Remainder(result, n.magnitude); } return new BigInteger(sign, result, true); }
public BigInteger ModInverse( BigInteger m) { if (m.sign < 1) throw new ArithmeticException("Modulus must be positive"); // TODO Too slow at the moment // // "Fast Key Exchange with Elliptic Curve Systems" R.Schoeppel // if (m.TestBit(0)) // { // //The Almost Inverse Algorithm // int k = 0; // BigInteger B = One, C = Zero, F = this, G = m, tmp; // // for (;;) // { // // While F is even, do F=F/u, C=C*u, k=k+1. // int zeroes = F.GetLowestSetBit(); // if (zeroes > 0) // { // F = F.ShiftRight(zeroes); // C = C.ShiftLeft(zeroes); // k += zeroes; // } // // // If F = 1, then return B,k. // if (F.Equals(One)) // { // BigInteger half = m.Add(One).ShiftRight(1); // BigInteger halfK = half.ModPow(BigInteger.ValueOf(k), m); // return B.Multiply(halfK).Mod(m); // } // // if (F.CompareTo(G) < 0) // { // tmp = G; G = F; F = tmp; // tmp = B; B = C; C = tmp; // } // // F = F.Add(G); // B = B.Add(C); // } // } if (m.QuickPow2Check()) { return ModInversePow2(m); } BigInteger d = this.Remainder(m); BigInteger x; BigInteger gcd = ExtEuclid(d, m, out x); if (!gcd.Equals(One)) throw new ArithmeticException("Numbers not relatively prime."); if (x.sign < 0) { x = x.Add(m); } return x; }