static void Main(string[] args) { // Create MLContext to be shared across the model creation workflow objects // Set a random seed for repeatable/deterministic results across multiple trainings. var mlContext = new MLContext(seed: 0); // 1. Common data loading configuration var textLoader = BikeSharingTextLoaderFactory.CreateTextLoader(mlContext); var trainingDataView = textLoader.Read(TrainingDataLocation); var testDataView = textLoader.Read(TestDataLocation); // 2. Common data pre-process with pipeline data transformations var dataProcessPipeline = mlContext.Transforms.CopyColumns("Count", "Label") // Concatenate all the numeric columns into a single features column .Append(mlContext.Transforms.Concatenate("Features", "Season", "Year", "Month", "Hour", "Holiday", "Weekday", "Weather", "Temperature", "NormalizedTemperature", "Humidity", "Windspeed")); // (Optional) Peek data in training DataView after applying the ProcessPipeline's transformations Common.ConsoleHelper.PeekDataViewInConsole <DemandObservation>(mlContext, trainingDataView, dataProcessPipeline, 10); Common.ConsoleHelper.PeekVectorColumnDataInConsole(mlContext, "Features", trainingDataView, dataProcessPipeline, 10); // Definition of regression trainers/algorithms to use //var regressionLearners = new (string name, IEstimator<ITransformer> value)[] (string name, IEstimator <ITransformer> value)[] regressionLearners =
static void Main(string[] args) { // Create MLContext to be shared across the model creation workflow objects // Set a random seed for repeatable/deterministic results across multiple trainings. var mlContext = new MLContext(seed: 0); // 1. Common data loading configuration var textLoader = BikeSharingTextLoaderFactory.CreateTextLoader(mlContext); var trainingDataView = textLoader.Read(TrainingDataLocation); var testDataView = textLoader.Read(TestDataLocation); // 2. Common data pre-process with pipeline data transformations var dataProcessPipeline = BikeSharingDataProcessPipelineFactory.CreateDataProcessPipeline(mlContext); // (Optional) Peek data in training DataView after applying the ProcessPipeline's transformations Common.ConsoleHelper.PeekDataViewInConsole <DemandObservation>(mlContext, trainingDataView, dataProcessPipeline, 10); Common.ConsoleHelper.PeekVectorColumnDataInConsole(mlContext, "Features", trainingDataView, dataProcessPipeline, 10); // Definition of regression trainers/algorithms to use //var regressionLearners = new (string name, IEstimator<ITransformer> value)[] (string name, IEstimator <ITransformer> value)[] regressionLearners =