/// <summary> /// Normal (Gaussian) inverse cumulative distribution function. /// </summary> /// /// <remarks> /// <para> /// For small arguments <c>0 < y < exp(-2)</c>, the program computes <c>z = /// sqrt( -2.0 * log(y) )</c>; then the approximation is <c>x = z - log(z)/z - /// (1/z) P(1/z) / Q(1/z)</c>.</para> /// <para> /// There are two rational functions P/Q, one for <c>0 < y < exp(-32)</c> and /// the other for <c>y</c> up to <c>exp(-2)</c>. For larger arguments, <c>w = y - 0.5</c>, /// and <c>x/sqrt(2pi) = w + w^3 * R(w^2)/S(w^2))</c>.</para> /// </remarks> /// /// <returns> /// Returns the value, <c>x</c>, for which the area under the Normal (Gaussian) /// probability density function (integrated from minus infinity to <c>x</c>) is /// equal to the argument <c>y</c> (assumes mean is zero, variance is one). /// </returns> /// public static double Inverse(double y0) { if (y0 <= 0.0) { if (y0 == 0) { return(Double.NegativeInfinity); } throw new ArgumentOutOfRangeException("y0"); } if (y0 >= 1.0) { if (y0 == 1) { return(Double.PositiveInfinity); } throw new ArgumentOutOfRangeException("y0"); } double s2pi = Math.Sqrt(2.0 * Math.PI); int code = 1; double y = y0; double x; double[] P0 = { -59.963350101410789, 98.001075418599967, -56.676285746907027, 13.931260938727968, -1.2391658386738125 }; double[] Q0 = { 1.9544885833814176, 4.6762791289888153, 86.360242139089053, -225.46268785411937, 200.26021238006066, -82.037225616833339, 15.90562251262117, -1.1833162112133 }; double[] P1 = { 4.0554489230596245, 31.525109459989388, 57.162819224642128, 44.080507389320083, 14.684956192885803, 2.1866330685079025, -0.14025607917135449, -0.035042462682784818, -0.00085745678515468545 }; double[] Q1 = { 15.779988325646675, 45.390763512887922, 41.317203825467203, 15.04253856929075, 2.5046494620830941, -0.14218292285478779, -0.038080640769157827, -0.00093325948089545744 }; double[] P2 = { 3.2377489177694603, 6.9152288906898418, 3.9388102529247444, 1.3330346081580755, 0.20148538954917908, 0.012371663481782003, 0.00030158155350823543, 2.6580697468673755E-06, 6.2397453918498331E-09 }; double[] Q2 = { 6.02427039364742, 3.6798356385616087, 1.3770209948908132, 0.21623699359449663, 0.013420400608854318, 0.00032801446468212774, 2.8924786474538068E-06, 6.7901940800998127E-09 }; if (y > 0.8646647167633873) { y = 1.0 - y; code = 0; } if (y > 0.1353352832366127) { y -= 0.5; double y2 = y * y; x = y + y * ((y2 * Special.Polevl(y2, P0, 4)) / Special.P1evl(y2, Q0, 8)); x *= s2pi; return(x); } x = Math.Sqrt(-2.0 * Math.Log(y)); double x0 = x - Math.Log(x) / x; double z = 1.0 / x; double x1; if (x < 8.0) { x1 = (z * Special.Polevl(z, P1, 8)) / Special.P1evl(z, Q1, 8); } else { x1 = (z * Special.Polevl(z, P2, 8)) / Special.P1evl(z, Q2, 8); } x = x0 - x1; if (code != 0) { x = -x; } return(x); }
/// <summary> /// Normal cumulative distribution function. /// </summary> /// /// <returns> /// The area under the Gaussian p.d.f. integrated /// from minus infinity to the given value. /// </returns> /// public static double Function(double value) { return(0.5 + 0.5 * Special.Erf(value / Constants.Sqrt2)); }
/// <summary> /// Complemented cumulative distribution function. /// </summary> /// /// <returns> /// The area under the Gaussian p.d.f. integrated /// from the given value to positive infinity. /// </returns> /// public static double Complemented(double value) { return(0.5 * Special.Erfc(value / Constants.Sqrt2)); }