예제 #1
0
        /// <summary>
        /// Data input yang dimasukkan dari array 0 - akhir itu nilai reflectance dari wave length: 2501.982414 sampe 1350.724346
        /// </summary>
        /// <param name="DataReflectance"></param>
        /// <returns></returns>
        static ModelInput PreProcessData(List <float> DataReflectance)
        {
            try
            {
                var item = new ModelInput();
                //convert to absorbance

                for (int col = 0; col < DataReflectance.Count; col++)
                {
                    DataReflectance[col] = (float)Math.Log(1 / DataReflectance[col]);
                }


                //sav gol filter
                SavitzkyGolayFilter filter = new SavitzkyGolayFilter(11, 2);

                List <double> rowDatas = new List <double>();
                for (int col = 0; col < DataReflectance.Count; col++)
                {
                    rowDatas.Add(DataReflectance[col]);
                }
                var filteredRow = filter.Process(rowDatas.ToArray());
                for (int col = 0; col < DataReflectance.Count; col++)
                {
                    DataReflectance[col] = (float)filteredRow[col];
                }


                //SNV

                rowDatas = new List <double>();
                for (int col = 0; col < DataReflectance.Count; col++)
                {
                    rowDatas.Add(DataReflectance[col]);
                }
                var mean   = rowDatas.Average();
                var stdDev = MathExt.StdDev(rowDatas);
                for (int col = 0; col < DataReflectance.Count; col++)
                {
                    DataReflectance[col] = (float)((DataReflectance[col] - mean) / stdDev);
                }

                item.FeatureVector = DataReflectance.ToArray();

                return(item);
            }
            catch
            {
                return(null);
            }
        }
예제 #2
0
        static void PreProcessed(string TargetFolder, string PreProcessFolder)
        {
            if (!Directory.Exists(PreProcessFolder))
            {
                Directory.CreateDirectory(PreProcessFolder);
            }
            var fileCsvs = Directory.GetFiles(TargetFolder, "*.csv");

            foreach (var file in fileCsvs)
            {
                var dt = ConvertCSVtoDataTable(file);
                //convert to absorbance
                foreach (DataRow dr in dt.Rows)
                {
                    for (int col = 1; col < dt.Columns.Count; col++)
                    {
                        dr[col] = Math.Log(1 / double.Parse(dr[col].ToString()));
                    }
                }
                dt.AcceptChanges();
                //sav gol filter
                SavitzkyGolayFilter filter = new SavitzkyGolayFilter(11, 2);
                foreach (DataRow dr in dt.Rows)
                {
                    List <double> rowDatas = new List <double>();
                    for (int col = 1; col < dt.Columns.Count; col++)
                    {
                        rowDatas.Add(double.Parse(dr[col].ToString()));
                    }
                    var filteredRow = filter.Process(rowDatas.ToArray());
                    for (int col = 1; col < dt.Columns.Count; col++)
                    {
                        dr[col] = filteredRow[col - 1];
                    }
                }
                dt.AcceptChanges();
                //SNV
                foreach (DataRow dr in dt.Rows)
                {
                    List <double> rowDatas = new List <double>();
                    for (int col = 1; col < dt.Columns.Count; col++)
                    {
                        rowDatas.Add(double.Parse(dr[col].ToString()));
                    }
                    var mean   = rowDatas.Average();
                    var stdDev = MathExt.StdDev(rowDatas);
                    for (int col = 1; col < dt.Columns.Count; col++)
                    {
                        dr[col] = (double.Parse(dr[col].ToString()) - mean) / stdDev;
                    }
                }
                dt.AcceptChanges();
                //save to file
                {
                    var           col = 0;
                    StringBuilder sb  = new StringBuilder();
                    //print column name

                    sb.Append(dt.Columns[col].ColumnName);
                    for (int x = 1; x < dt.Columns.Count; x++)
                    {
                        sb.Append("," + dt.Columns[x].ColumnName);
                    }
                    sb.Append(Environment.NewLine);
                    //print data column
                    foreach (DataRow dr in dt.Rows)
                    {
                        sb.Append(dr[col].ToString());
                        for (int x = 1; x < dt.Columns.Count; x++)
                        {
                            sb.Append("," + dr[x].ToString());
                        }
                        sb.Append(Environment.NewLine);
                    }
                    var PathStr = PreProcessFolder + "\\" + dt.Columns[col].ColumnName + ".csv";
                    File.WriteAllText(PathStr, sb.ToString());
                    ConsoleHelper.Print($"{dt.Columns[col].ColumnName} - file generated.");
                }
            }
        }