/// <summary> /// Apply feature learning process on a set of patch sampling set in an unsupervised manner /// Output clusters /// </summary> public static List <KmeansClustering.Output> UnsupervisedFeatureLearning(FeatureLearningSettings config, string inputPath) { // check whether there is any file in the folder/subfolders if (Directory.GetFiles(inputPath, "*", SearchOption.AllDirectories).Length == 0) { throw new ArgumentException("The folder of recordings is empty..."); } int frameSize = config.FrameSize; int finalBinCount = config.FinalBinCount; FreqScaleType scaleType = config.FrequencyScaleType; var settings = new SpectrogramSettings() { WindowSize = frameSize, // the duration of each frame (according to the default value (i.e., 1024) of frame size) is 0.04644 seconds // The question is how many single-frames (i.e., patch height is equal to 1) should be selected to form one second // The "WindowOverlap" is calculated to answer this question // each 24 single-frames duration is equal to 1 second // note that the "WindowOverlap" value should be recalculated if frame size is changed // this has not yet been considered in the Config file! WindowOverlap = 0.10725204, DoMelScale = (scaleType == FreqScaleType.Mel) ? true : false, MelBinCount = (scaleType == FreqScaleType.Mel) ? finalBinCount : frameSize / 2, NoiseReductionType = NoiseReductionType.None, NoiseReductionParameter = 0.0, }; double frameStep = frameSize * (1 - settings.WindowOverlap); int minFreqBin = config.MinFreqBin; int maxFreqBin = config.MaxFreqBin; int numFreqBand = config.NumFreqBand; int patchWidth = (maxFreqBin - minFreqBin + 1) / numFreqBand; int patchHeight = config.PatchHeight; int numRandomPatches = config.NumRandomPatches; // Define variable number of "randomPatch" lists based on "numFreqBand" Dictionary <string, List <double[, ]> > randomPatchLists = new Dictionary <string, List <double[, ]> >(); for (int i = 0; i < numFreqBand; i++) { randomPatchLists.Add($"randomPatch{i.ToString()}", new List <double[, ]>()); } List <double[, ]> randomPatches = new List <double[, ]>(); double[,] inputMatrix; List <AudioRecording> recordings = new List <AudioRecording>(); foreach (string filePath in Directory.GetFiles(inputPath, "*.wav")) { FileInfo fileInfo = filePath.ToFileInfo(); // process the wav file if it is not empty if (fileInfo.Length != 0) { var recording = new AudioRecording(filePath); settings.SourceFileName = recording.BaseName; if (config.DoSegmentation) { recordings = PatchSampling.GetSubsegmentsSamples(recording, config.SubsegmentDurationInSeconds, frameStep); } else { recordings.Add(recording); } for (int i = 0; i < recordings.Count; i++) { var amplitudeSpectrogram = new AmplitudeSpectrogram(settings, recordings[i].WavReader); var decibelSpectrogram = new DecibelSpectrogram(amplitudeSpectrogram); // DO RMS NORMALIZATION //sonogram.Data = SNR.RmsNormalization(sonogram.Data); if (config.DoNoiseReduction) { decibelSpectrogram.Data = PcaWhitening.NoiseReduction(decibelSpectrogram.Data); } // check whether the full band spectrogram is needed or a matrix with arbitrary freq bins if (minFreqBin != 1 || maxFreqBin != finalBinCount) { inputMatrix = PatchSampling.GetArbitraryFreqBandMatrix(decibelSpectrogram.Data, minFreqBin, maxFreqBin); } else { inputMatrix = decibelSpectrogram.Data; } // creating matrices from different freq bands of the source spectrogram List <double[, ]> allSubmatrices = PatchSampling.GetFreqBandMatrices(inputMatrix, numFreqBand); // selecting random patches from each freq band matrix and add them to the corresponding patch list int count = 0; while (count < allSubmatrices.Count) { // downsampling the input matrix by a factor of n (MaxPoolingFactor) using max pooling double[,] downsampledMatrix = MaxPooling(allSubmatrices.ToArray()[count], config.MaxPoolingFactor); randomPatchLists[$"randomPatch{count.ToString()}"].Add(PatchSampling .GetPatches(downsampledMatrix, patchWidth, patchHeight, numRandomPatches, PatchSampling.SamplingMethod.Random).ToMatrix()); count++; } } } } foreach (string key in randomPatchLists.Keys) { randomPatches.Add(PatchSampling.ListOf2DArrayToOne2DArray(randomPatchLists[key])); } // convert list of random patches matrices to one matrix int numClusters = config.NumClusters; List <KmeansClustering.Output> allClusteringOutput = new List <KmeansClustering.Output>(); for (int i = 0; i < randomPatches.Count; i++) { double[,] patchMatrix = randomPatches[i]; // Apply PCA Whitening var whitenedSpectrogram = PcaWhitening.Whitening(config.DoWhitening, patchMatrix); // Do k-means clustering var clusteringOutput = KmeansClustering.Clustering(whitenedSpectrogram.Reversion, numClusters); allClusteringOutput.Add(clusteringOutput); } return(allClusteringOutput); }
/// <summary> /// Apply feature learning process on a set of target (1-minute) recordings (inputPath) /// according to the a set of centroids learned using feature learning process. /// Output feature vectors (outputPath). /// </summary> public static void UnsupervisedFeatureExtraction(FeatureLearningSettings config, List <double[][]> allCentroids, string inputPath, string outputPath) { var simVecDir = Directory.CreateDirectory(Path.Combine(outputPath, "SimilarityVectors")); int frameSize = config.FrameSize; int finalBinCount = config.FinalBinCount; FreqScaleType scaleType = config.FrequencyScaleType; var settings = new SpectrogramSettings() { WindowSize = frameSize, // the duration of each frame (according to the default value (i.e., 1024) of frame size) is 0.04644 seconds // The question is how many single-frames (i.e., patch height is equal to 1) should be selected to form one second // The "WindowOverlap" is calculated to answer this question // each 24 single-frames duration is equal to 1 second // note that the "WindowOverlap" value should be recalculated if frame size is changed // this has not yet been considered in the Config file! WindowOverlap = 0.10725204, DoMelScale = (scaleType == FreqScaleType.Mel) ? true : false, MelBinCount = (scaleType == FreqScaleType.Mel) ? finalBinCount : frameSize / 2, NoiseReductionType = NoiseReductionType.None, NoiseReductionParameter = 0.0, }; double frameStep = frameSize * (1 - settings.WindowOverlap); int minFreqBin = config.MinFreqBin; int maxFreqBin = config.MaxFreqBin; int numFreqBand = config.NumFreqBand; int patchWidth = (maxFreqBin - minFreqBin + 1) / numFreqBand; int patchHeight = config.PatchHeight; // the number of frames that their feature vectors will be concatenated in order to preserve temporal information. int frameWindowLength = config.FrameWindowLength; // the step size to make a window of frames int stepSize = config.StepSize; // the factor of downsampling int maxPoolingFactor = config.MaxPoolingFactor; // check whether there is any file in the folder/subfolders if (Directory.GetFiles(inputPath, "*", SearchOption.AllDirectories).Length == 0) { throw new ArgumentException("The folder of recordings is empty..."); } //***** // lists of features for all processing files // the key is the file name, and the value is the features for different bands Dictionary <string, List <double[, ]> > allFilesMinFeatureVectors = new Dictionary <string, List <double[, ]> >(); Dictionary <string, List <double[, ]> > allFilesMeanFeatureVectors = new Dictionary <string, List <double[, ]> >(); Dictionary <string, List <double[, ]> > allFilesMaxFeatureVectors = new Dictionary <string, List <double[, ]> >(); Dictionary <string, List <double[, ]> > allFilesStdFeatureVectors = new Dictionary <string, List <double[, ]> >(); Dictionary <string, List <double[, ]> > allFilesSkewnessFeatureVectors = new Dictionary <string, List <double[, ]> >(); double[,] inputMatrix; List <AudioRecording> recordings = new List <AudioRecording>(); foreach (string filePath in Directory.GetFiles(inputPath, "*.wav")) { FileInfo fileInfo = filePath.ToFileInfo(); // process the wav file if it is not empty if (fileInfo.Length != 0) { var recording = new AudioRecording(filePath); settings.SourceFileName = recording.BaseName; if (config.DoSegmentation) { recordings = PatchSampling.GetSubsegmentsSamples(recording, config.SubsegmentDurationInSeconds, frameStep); } else { recordings.Add(recording); } for (int s = 0; s < recordings.Count; s++) { string pathToSimilarityVectorsFile = Path.Combine(simVecDir.FullName, fileInfo.Name + "-" + s.ToString() + ".csv"); var amplitudeSpectrogram = new AmplitudeSpectrogram(settings, recordings[s].WavReader); var decibelSpectrogram = new DecibelSpectrogram(amplitudeSpectrogram); // DO RMS NORMALIZATION //sonogram.Data = SNR.RmsNormalization(sonogram.Data); // DO NOISE REDUCTION if (config.DoNoiseReduction) { decibelSpectrogram.Data = PcaWhitening.NoiseReduction(decibelSpectrogram.Data); } // check whether the full band spectrogram is needed or a matrix with arbitrary freq bins if (minFreqBin != 1 || maxFreqBin != finalBinCount) { inputMatrix = PatchSampling.GetArbitraryFreqBandMatrix(decibelSpectrogram.Data, minFreqBin, maxFreqBin); } else { inputMatrix = decibelSpectrogram.Data; } // creating matrices from different freq bands of the source spectrogram List <double[, ]> allSubmatrices2 = PatchSampling.GetFreqBandMatrices(inputMatrix, numFreqBand); double[][,] matrices2 = allSubmatrices2.ToArray(); List <double[, ]> allSequentialPatchMatrix = new List <double[, ]>(); for (int i = 0; i < matrices2.GetLength(0); i++) { // downsampling the input matrix by a factor of n (MaxPoolingFactor) using max pooling double[,] downsampledMatrix = FeatureLearning.MaxPooling(matrices2[i], config.MaxPoolingFactor); int rows = downsampledMatrix.GetLength(0); int columns = downsampledMatrix.GetLength(1); var sequentialPatches = PatchSampling.GetPatches(downsampledMatrix, patchWidth, patchHeight, (rows / patchHeight) * (columns / patchWidth), PatchSampling.SamplingMethod.Sequential); allSequentialPatchMatrix.Add(sequentialPatches.ToMatrix()); } // +++++++++++++++++++++++++++++++++++Feature Transformation // to do the feature transformation, we normalize centroids and // sequential patches from the input spectrogram to unit length // Then, we calculate the dot product of each patch with the centroids' matrix List <double[][]> allNormCentroids = new List <double[][]>(); for (int i = 0; i < allCentroids.Count; i++) { // double check the index of the list double[][] normCentroids = new double[allCentroids.ToArray()[i].GetLength(0)][]; for (int j = 0; j < allCentroids.ToArray()[i].GetLength(0); j++) { normCentroids[j] = ART_2A.NormaliseVector(allCentroids.ToArray()[i][j]); } allNormCentroids.Add(normCentroids); } List <double[][]> allFeatureTransVectors = new List <double[][]>(); // processing the sequential patch matrix for each band for (int i = 0; i < allSequentialPatchMatrix.Count; i++) { List <double[]> featureTransVectors = new List <double[]>(); double[][] similarityVectors = new double[allSequentialPatchMatrix.ToArray()[i].GetLength(0)][]; for (int j = 0; j < allSequentialPatchMatrix.ToArray()[i].GetLength(0); j++) { // normalize each patch to unit length var inputVector = allSequentialPatchMatrix.ToArray()[i].ToJagged()[j]; var normVector = inputVector; // to avoid vectors with NaN values, only normalize those that their norm is not equal to zero. if (inputVector.Euclidean() != 0) { normVector = ART_2A.NormaliseVector(inputVector); } similarityVectors[j] = allNormCentroids.ToArray()[i].ToMatrix().Dot(normVector); } Csv.WriteMatrixToCsv(pathToSimilarityVectorsFile.ToFileInfo(), similarityVectors.ToMatrix()); // To preserve the temporal information, we can concatenate the similarity vectors of a group of frames // using FrameWindowLength // patchId refers to the patch id that has been processed so far according to the step size. // if we want no overlap between different frame windows, then stepSize = frameWindowLength int patchId = 0; while (patchId + frameWindowLength - 1 < similarityVectors.GetLength(0)) { List <double[]> patchGroup = new List <double[]>(); for (int k = 0; k < frameWindowLength; k++) { patchGroup.Add(similarityVectors[k + patchId]); } featureTransVectors.Add(DataTools.ConcatenateVectors(patchGroup)); patchId = patchId + stepSize; } allFeatureTransVectors.Add(featureTransVectors.ToArray()); } // +++++++++++++++++++++++++++++++++++Feature Transformation // +++++++++++++++++++++++++++++++++++Temporal Summarization // Based on the resolution to generate features, the "numFrames" parameter will be set. // Each 24 single-frame patches form 1 second // for each 24 patch, we generate 5 vectors of min, mean, std, and max (plus skewness from Accord.net) // The pre-assumption is that each input recording is 1 minute long // store features of different bands in lists List <double[, ]> allMinFeatureVectors = new List <double[, ]>(); List <double[, ]> allMeanFeatureVectors = new List <double[, ]>(); List <double[, ]> allMaxFeatureVectors = new List <double[, ]>(); List <double[, ]> allStdFeatureVectors = new List <double[, ]>(); List <double[, ]> allSkewnessFeatureVectors = new List <double[, ]>(); // Each 24 frames form 1 second using WindowOverlap // factors such as stepSize, and maxPoolingFactor should be considered in temporal summarization. int numFrames = 24 / (patchHeight * stepSize * maxPoolingFactor); foreach (var freqBandFeature in allFeatureTransVectors) { List <double[]> minFeatureVectors = new List <double[]>(); List <double[]> meanFeatureVectors = new List <double[]>(); List <double[]> maxFeatureVectors = new List <double[]>(); List <double[]> stdFeatureVectors = new List <double[]>(); List <double[]> skewnessFeatureVectors = new List <double[]>(); int c = 0; while (c + numFrames <= freqBandFeature.GetLength(0)) { // First, make a list of patches that would be equal to the needed resolution (1 second, 60 second, etc.) List <double[]> sequencesOfFramesList = new List <double[]>(); for (int i = c; i < c + numFrames; i++) { sequencesOfFramesList.Add(freqBandFeature[i]); } List <double> min = new List <double>(); List <double> mean = new List <double>(); List <double> std = new List <double>(); List <double> max = new List <double>(); List <double> skewness = new List <double>(); double[,] sequencesOfFrames = sequencesOfFramesList.ToArray().ToMatrix(); // Second, calculate mean, max, and standard deviation (plus skewness) of vectors element-wise for (int j = 0; j < sequencesOfFrames.GetLength(1); j++) { double[] temp = new double[sequencesOfFrames.GetLength(0)]; for (int k = 0; k < sequencesOfFrames.GetLength(0); k++) { temp[k] = sequencesOfFrames[k, j]; } min.Add(temp.GetMinValue()); mean.Add(AutoAndCrossCorrelation.GetAverage(temp)); std.Add(AutoAndCrossCorrelation.GetStdev(temp)); max.Add(temp.GetMaxValue()); skewness.Add(temp.Skewness()); } minFeatureVectors.Add(min.ToArray()); meanFeatureVectors.Add(mean.ToArray()); maxFeatureVectors.Add(max.ToArray()); stdFeatureVectors.Add(std.ToArray()); skewnessFeatureVectors.Add(skewness.ToArray()); c += numFrames; } // when (freqBandFeature.GetLength(0) % numFrames) != 0, it means there are a number of frames (< numFrames) // (or the whole) at the end of the target recording , left unprocessed. // this would be problematic when an the resolution to generate the feature vector is 1 min, // but the the length of the target recording is a bit less than one min. if (freqBandFeature.GetLength(0) % numFrames != 0 && freqBandFeature.GetLength(0) % numFrames > 1) { // First, make a list of patches that would be less than the required resolution List <double[]> sequencesOfFramesList = new List <double[]>(); int unprocessedFrames = freqBandFeature.GetLength(0) % numFrames; for (int i = freqBandFeature.GetLength(0) - unprocessedFrames; i < freqBandFeature.GetLength(0); i++) { sequencesOfFramesList.Add(freqBandFeature[i]); } List <double> min = new List <double>(); List <double> mean = new List <double>(); List <double> std = new List <double>(); List <double> max = new List <double>(); List <double> skewness = new List <double>(); double[,] sequencesOfFrames = sequencesOfFramesList.ToArray().ToMatrix(); // Second, calculate mean, max, and standard deviation (plus skewness) of vectors element-wise for (int j = 0; j < sequencesOfFrames.GetLength(1); j++) { double[] temp = new double[sequencesOfFrames.GetLength(0)]; for (int k = 0; k < sequencesOfFrames.GetLength(0); k++) { temp[k] = sequencesOfFrames[k, j]; } min.Add(temp.GetMinValue()); mean.Add(AutoAndCrossCorrelation.GetAverage(temp)); std.Add(AutoAndCrossCorrelation.GetStdev(temp)); max.Add(temp.GetMaxValue()); skewness.Add(temp.Skewness()); } minFeatureVectors.Add(min.ToArray()); meanFeatureVectors.Add(mean.ToArray()); maxFeatureVectors.Add(max.ToArray()); stdFeatureVectors.Add(std.ToArray()); skewnessFeatureVectors.Add(skewness.ToArray()); } allMinFeatureVectors.Add(minFeatureVectors.ToArray().ToMatrix()); allMeanFeatureVectors.Add(meanFeatureVectors.ToArray().ToMatrix()); allMaxFeatureVectors.Add(maxFeatureVectors.ToArray().ToMatrix()); allStdFeatureVectors.Add(stdFeatureVectors.ToArray().ToMatrix()); allSkewnessFeatureVectors.Add(skewnessFeatureVectors.ToArray().ToMatrix()); } //***** // the keys of the following dictionaries contain file name // and their values are a list<double[,]> which the list.count is // the number of all subsegments for which features are extracted // the number of freq bands defined as an user-defined parameter. // the 2D-array is the feature vectors. allFilesMinFeatureVectors.Add(fileInfo.Name + "-" + s.ToString(), allMinFeatureVectors); allFilesMeanFeatureVectors.Add(fileInfo.Name + "-" + s.ToString(), allMeanFeatureVectors); allFilesMaxFeatureVectors.Add(fileInfo.Name + "-" + s.ToString(), allMaxFeatureVectors); allFilesStdFeatureVectors.Add(fileInfo.Name + "-" + s.ToString(), allStdFeatureVectors); allFilesSkewnessFeatureVectors.Add(fileInfo.Name + "-" + s.ToString(), allSkewnessFeatureVectors); // +++++++++++++++++++++++++++++++++++Temporal Summarization } } } // ++++++++++++++++++++++++++++++++++Writing features to one file // First, concatenate mean, max, std for each second. // Then, write the features of each pre-defined frequency band into a separate CSV file. var filesName = allFilesMeanFeatureVectors.Keys.ToArray(); var minFeatures = allFilesMinFeatureVectors.Values.ToArray(); var meanFeatures = allFilesMeanFeatureVectors.Values.ToArray(); var maxFeatures = allFilesMaxFeatureVectors.Values.ToArray(); var stdFeatures = allFilesStdFeatureVectors.Values.ToArray(); var skewnessFeatures = allFilesSkewnessFeatureVectors.Values.ToArray(); // The number of elements in the list shows the number of freq bands // the size of each element in the list shows the number of files processed to generate feature for. // the dimensions of the matrix shows the number of feature vectors generated for each file and the length of feature vector var allMins = new List <double[][, ]>(); var allMeans = new List <double[][, ]>(); var allMaxs = new List <double[][, ]>(); var allStds = new List <double[][, ]>(); var allSkewness = new List <double[][, ]>(); // looping over freq bands for (int i = 0; i < meanFeatures[0].Count; i++) { var mins = new List <double[, ]>(); var means = new List <double[, ]>(); var maxs = new List <double[, ]>(); var stds = new List <double[, ]>(); var skewnesses = new List <double[, ]>(); // looping over all files for (int k = 0; k < meanFeatures.Length; k++) { mins.Add(minFeatures[k].ToArray()[i]); means.Add(meanFeatures[k].ToArray()[i]); maxs.Add(maxFeatures[k].ToArray()[i]); stds.Add(stdFeatures[k].ToArray()[i]); skewnesses.Add(skewnessFeatures[k].ToArray()[i]); } allMins.Add(mins.ToArray()); allMeans.Add(means.ToArray()); allMaxs.Add(maxs.ToArray()); allStds.Add(stds.ToArray()); allSkewness.Add(skewnesses.ToArray()); } // each element of meanFeatures array is a list of features for different frequency bands. // looping over the number of freq bands for (int i = 0; i < allMeans.ToArray().GetLength(0); i++) { // creating output feature file based on the number of freq bands var outputFeatureFile = Path.Combine(outputPath, "FeatureVectors-" + i.ToString() + ".csv"); // creating the header for CSV file List <string> header = new List <string>(); header.Add("file name"); for (int j = 0; j < allMins.ToArray()[i][0].GetLength(1); j++) { header.Add("min" + j.ToString()); } for (int j = 0; j < allMeans.ToArray()[i][0].GetLength(1); j++) { header.Add("mean" + j.ToString()); } for (int j = 0; j < allMaxs.ToArray()[i][0].GetLength(1); j++) { header.Add("max" + j.ToString()); } for (int j = 0; j < allStds.ToArray()[i][0].GetLength(1); j++) { header.Add("std" + j.ToString()); } for (int j = 0; j < allSkewness.ToArray()[i][0].GetLength(1); j++) { header.Add("skewness" + j.ToString()); } var csv = new StringBuilder(); string content = string.Empty; foreach (var entry in header.ToArray()) { content += entry.ToString() + ","; } csv.AppendLine(content); var allFilesFeatureVectors = new Dictionary <string, double[, ]>(); // looping over files for (int j = 0; j < allMeans.ToArray()[i].GetLength(0); j++) { // concatenating mean, std, and max vector together for the pre-defined resolution List <double[]> featureVectors = new List <double[]>(); for (int k = 0; k < allMeans.ToArray()[i][j].ToJagged().GetLength(0); k++) { List <double[]> featureList = new List <double[]> { allMins.ToArray()[i][j].ToJagged()[k], allMeans.ToArray()[i][j].ToJagged()[k], allMaxs.ToArray()[i][j].ToJagged()[k], allStds.ToArray()[i][j].ToJagged()[k], allSkewness.ToArray()[i][j].ToJagged()[k], }; double[] featureVector = DataTools.ConcatenateVectors(featureList); featureVectors.Add(featureVector); } allFilesFeatureVectors.Add(filesName[j], featureVectors.ToArray().ToMatrix()); } // writing feature vectors to CSV file foreach (var entry in allFilesFeatureVectors) { content = string.Empty; content += entry.Key.ToString() + ","; foreach (var cent in entry.Value) { content += cent.ToString() + ","; } csv.AppendLine(content); } File.WriteAllText(outputFeatureFile, csv.ToString()); } }
/// <summary> /// This method is called semi-supervised feature learning because one of the clusters is formed using /// the positive frames manually selected from 1-min recordings. /// The input to this methods is a group of files that contains the call of interest, /// a 2D-array that contains file name, the second number and the corresponding frame numbers in each file. /// At the moment, this method only handles single-frames as patches (PatchHeight = 1). /// </summary> public static List <KmeansClustering.Output> SemisupervisedFeatureLearning(FeatureLearningSettings config, string inputPath, string[,] frameInfo) { // making a dictionary of frame info as file name and second number as key, and start and end frame number as value. Dictionary <Tuple <string, int>, int[]> info = new Dictionary <Tuple <string, int>, int[]>(); for (int i = 0; i < frameInfo.GetLength(0); i++) { Tuple <string, int> keys = new Tuple <string, int>(frameInfo[i, 0], Convert.ToInt32(frameInfo[i, 1])); int[] values = new int[2] { Convert.ToInt32(frameInfo[i, 2]), Convert.ToInt32(frameInfo[i, 3]) }; info.Add(keys, values); } // processing the recordings within the input path // check whether there is any file in the folder/subfolders if (Directory.GetFiles(inputPath, "*", SearchOption.AllDirectories).Length == 0) { throw new ArgumentException("The folder of recordings is empty..."); } int frameSize = config.FrameSize; int finalBinCount = config.FinalBinCount; FreqScaleType scaleType = config.FrequencyScaleType; var settings = new SpectrogramSettings() { WindowSize = frameSize, // the duration of each frame (according to the default value (i.e., 1024) of frame size) is 0.04644 seconds // The question is how many single-frames (i.e., patch height is equal to 1) should be selected to form one second // The "WindowOverlap" is calculated to answer this question // each 24 single-frames duration is equal to 1 second // note that the "WindowOverlap" value should be recalculated if frame size is changed // this has not yet been considered in the Config file! WindowOverlap = 0.10725204, DoMelScale = (scaleType == FreqScaleType.Mel) ? true : false, MelBinCount = (scaleType == FreqScaleType.Mel) ? finalBinCount : frameSize / 2, NoiseReductionType = NoiseReductionType.None, NoiseReductionParameter = 0.0, }; double frameStep = frameSize * (1 - settings.WindowOverlap); int minFreqBin = config.MinFreqBin; int maxFreqBin = config.MaxFreqBin; int numFreqBand = config.NumFreqBand; int patchWidth = (maxFreqBin - minFreqBin + 1) / numFreqBand; int patchHeight = config.PatchHeight; int numRandomPatches = config.NumRandomPatches; // Define variable number of "randomPatch" lists based on "numFreqBand" Dictionary <string, List <double[, ]> > randomPatchLists = new Dictionary <string, List <double[, ]> >(); Dictionary <string, List <double[, ]> > sequentialPatchLists = new Dictionary <string, List <double[, ]> >(); for (int i = 0; i < numFreqBand; i++) { randomPatchLists.Add($"randomPatch{i.ToString()}", new List <double[, ]>()); sequentialPatchLists.Add($"sequentialPatch{i.ToString()}", new List <double[, ]>()); } List <double[, ]> randomPatches = new List <double[, ]>(); List <double[, ]> positivePatches = new List <double[, ]>(); double[,] inputMatrix; List <AudioRecording> recordings = new List <AudioRecording>(); foreach (string filePath in Directory.GetFiles(inputPath, "*.wav")) { FileInfo fileInfo = filePath.ToFileInfo(); // process the wav file if it is not empty if (fileInfo.Length != 0) { var recording = new AudioRecording(filePath); settings.SourceFileName = recording.BaseName; if (config.DoSegmentation) { recordings = PatchSampling.GetSubsegmentsSamples(recording, config.SubsegmentDurationInSeconds, frameStep); } else { recordings.Add(recording); } for (int i = 0; i < recordings.Count; i++) { var amplitudeSpectrogram = new AmplitudeSpectrogram(settings, recordings[i].WavReader); var decibelSpectrogram = new DecibelSpectrogram(amplitudeSpectrogram); if (config.DoNoiseReduction) { decibelSpectrogram.Data = PcaWhitening.NoiseReduction(decibelSpectrogram.Data); } // check whether the full band spectrogram is needed or a matrix with arbitrary freq bins if (minFreqBin != 1 || maxFreqBin != finalBinCount) { inputMatrix = PatchSampling.GetArbitraryFreqBandMatrix(decibelSpectrogram.Data, minFreqBin, maxFreqBin); } else { inputMatrix = decibelSpectrogram.Data; } // creating matrices from different freq bands of the source spectrogram List <double[, ]> allSubmatrices = PatchSampling.GetFreqBandMatrices(inputMatrix, numFreqBand); // check whether the file has any positive frame List <int> positiveFrameNumbers = new List <int>(); foreach (var entry in info) { // check whether the file and the current second (i) has positive frame if ((fileInfo.Name == entry.Key.Item1) && (i == entry.Key.Item2)) { // make a list of frame numbers for (int j = entry.Value[0]; j <= entry.Value[1]; j++) { positiveFrameNumbers.Add(j); } } } // making two matrices, one from positive frames and one from negative frames. List <double[, ]> allPositiveFramesSubmatrices = new List <double[, ]>(); List <double[, ]> allNegativeFramesSubmatrices = new List <double[, ]>(); List <int> negativeFrameNumbers = new List <int>(); for (int j = 1; j <= 24; j++) { bool flag = false; foreach (var number in positiveFrameNumbers) { if (j == number) { flag = true; break; } } // if flag is false, it means that the frame does not contain a part of bird call and should be added // to the negativeFrameNumbers list. if (!flag) { negativeFrameNumbers.Add(j); } } if (positiveFrameNumbers.ToArray().Length != 0) { foreach (var submatrix in allSubmatrices) { List <double[]> positiveFrames = new List <double[]>(); foreach (var number in positiveFrameNumbers) { positiveFrames.Add(submatrix.ToJagged()[number - 1]); } allPositiveFramesSubmatrices.Add(positiveFrames.ToArray().ToMatrix()); List <double[]> negativeFrames = new List <double[]>(); foreach (var number in negativeFrameNumbers) { negativeFrames.Add(submatrix.ToJagged()[number - 1]); } allNegativeFramesSubmatrices.Add(positiveFrames.ToArray().ToMatrix()); } } else { allNegativeFramesSubmatrices = allSubmatrices; } // selecting random patches from each freq band matrix and add them to the corresponding patch list int count = 0; while (count < allNegativeFramesSubmatrices.Count) { // select random patches from those segments that do not contain the call of interest if (allPositiveFramesSubmatrices.Count != 0) { // downsampling the input matrix by a factor of n (MaxPoolingFactor) using max pooling double[,] downsampledPositiveMatrix = MaxPooling(allPositiveFramesSubmatrices.ToArray()[count], config.MaxPoolingFactor); int rows = downsampledPositiveMatrix.GetLength(0); int columns = downsampledPositiveMatrix.GetLength(1); sequentialPatchLists[$"sequentialPatch{count.ToString()}"].Add( PatchSampling.GetPatches(downsampledPositiveMatrix, patchWidth, patchHeight, (rows / patchHeight) * (columns / patchWidth), PatchSampling.SamplingMethod.Sequential).ToMatrix()); } else { // downsampling the input matrix by a factor of n (MaxPoolingFactor) using max pooling double[,] downsampledNegativeMatrix = MaxPooling(allNegativeFramesSubmatrices.ToArray()[count], config.MaxPoolingFactor); randomPatchLists[$"randomPatch{count.ToString()}"].Add(PatchSampling .GetPatches(downsampledNegativeMatrix, patchWidth, patchHeight, numRandomPatches, PatchSampling.SamplingMethod.Random).ToMatrix()); } /* * We can use this block of code instead of line 384 to 389, if we want to select random patches from negative frames of the segments with call of interest * // downsampling the input matrix by a factor of n (MaxPoolingFactor) using max pooling * double[,] downsampledNegativeMatrix = MaxPooling(allNegativeFramesSubmatrices.ToArray()[count], config.MaxPoolingFactor); * if (downsampledNegativeMatrix.GetLength(0) < numRandomPatches) * { * int numR = downsampledNegativeMatrix.GetLength(0); * int numC = downsampledNegativeMatrix.GetLength(1); * randomPatchLists[$"randomPatch{count.ToString()}"].Add(PatchSampling * .GetPatches(downsampledNegativeMatrix, patchWidth, patchHeight, * (numR / patchHeight) * (numC / patchWidth), * PatchSampling.SamplingMethod.Sequential).ToMatrix()); * } * else * { * randomPatchLists[$"randomPatch{count.ToString()}"].Add(PatchSampling * .GetPatches(downsampledNegativeMatrix, patchWidth, patchHeight, numRandomPatches, * PatchSampling.SamplingMethod.Random).ToMatrix()); * } */ count++; } } } } foreach (string key in sequentialPatchLists.Keys) { positivePatches.Add(PatchSampling.ListOf2DArrayToOne2DArray(sequentialPatchLists[key])); } foreach (string key in randomPatchLists.Keys) { randomPatches.Add(PatchSampling.ListOf2DArrayToOne2DArray(randomPatchLists[key])); } // convert list of random patches matrices to one matrix int numClusters = config.NumClusters - 1; List <KmeansClustering.Output> semisupervisedClusteringOutput = new List <KmeansClustering.Output>(); List <KmeansClustering.Output> unsupervisedClusteringOutput = new List <KmeansClustering.Output>(); List <KmeansClustering.Output> supervisedClusteringOutput = new List <KmeansClustering.Output>(); // clustering of random patches for (int i = 0; i < randomPatches.Count; i++) { double[,] patchMatrix = randomPatches[i]; // Apply PCA Whitening var whitenedSpectrogram = PcaWhitening.Whitening(config.DoWhitening, patchMatrix); // Do k-means clustering var clusteringOutput = KmeansClustering.Clustering(whitenedSpectrogram.Reversion, numClusters); unsupervisedClusteringOutput.Add(clusteringOutput); } // build one cluster out of positive frames for (int i = 0; i < positivePatches.Count; i++) { double[,] patchMatrix = positivePatches[i]; // Apply PCA Whitening var whitenedSpectrogram = PcaWhitening.Whitening(config.DoWhitening, patchMatrix); // Do k-means clustering // build one cluster from positive patches var clusteringOutput = KmeansClustering.Clustering(whitenedSpectrogram.Reversion, 1); supervisedClusteringOutput.Add(clusteringOutput); } // merge the output of two clustering obtained from supervised and unsupervised approaches var positiveClusterId = config.NumClusters - 1; List <double[][]> positiveCentroids = new List <double[][]>(); List <double[]> positiveClusterSize = new List <double[]>(); foreach (var output in supervisedClusteringOutput) { positiveCentroids.Add(output.ClusterIdCentroid.Values.ToArray()); positiveClusterSize.Add(output.ClusterIdSize.Values.ToArray()); } semisupervisedClusteringOutput = unsupervisedClusteringOutput; for (int i = 0; i < semisupervisedClusteringOutput.Count; i++) { semisupervisedClusteringOutput[i].ClusterIdCentroid.Add(positiveClusterId, positiveCentroids[i][0]); semisupervisedClusteringOutput[i].ClusterIdSize.Add(positiveClusterId, positiveClusterSize[i][0]); } return(semisupervisedClusteringOutput); }