void CreateScene() { var cache = GetSubsystem<ResourceCache>(); scene = new Scene(); // Create the Octree component to the scene. This is required before adding any drawable components, or else nothing will // show up. The default octree volume will be from (-1000, -1000, -1000) to (1000, 1000, 1000) in world coordinates; it // is also legal to place objects outside the volume but their visibility can then not be checked in a hierarchically // optimizing manner scene.CreateComponent<Octree>(); // Create a child scene node (at world origin) and a StaticModel component into it. Set the StaticModel to show a simple // plane mesh with a "stone" material. Note that naming the scene nodes is optional. Scale the scene node larger // (100 x 100 world units) Node planeNode = scene.CreateChild("Plane"); planeNode.Scale=new Vector3(100.0f, 1.0f, 100.0f); StaticModel planeObject = planeNode.CreateComponent<StaticModel>(); planeObject.Model = (cache.Get<Model>("Models/Plane.mdl")); planeObject.SetMaterial(cache.Get<Material>("Materials/StoneTiled.xml")); // Create a point light to the world so that we can see something. Node lightNode = scene.CreateChild("PointLight"); Light light = lightNode.CreateComponent<Light>(); light.LightType = LightType.LIGHT_POINT; light.Range = (10.0f); // Create light animation ObjectAnimation lightAnimation=new ObjectAnimation(); // Create light position animation ValueAnimation positionAnimation=new ValueAnimation(); // Use spline interpolation method positionAnimation.InterpolationMethod= InterpMethod.IM_SPLINE; // Set spline tension positionAnimation.SplineTension=0.7f; positionAnimation.SetKeyFrame(0.0f, new Vector3(-30.0f, 5.0f, -30.0f)); positionAnimation.SetKeyFrame(1.0f, new Vector3(30.0f, 5.0f, -30.0f)); positionAnimation.SetKeyFrame(2.0f, new Vector3(30.0f, 5.0f, 30.0f)); positionAnimation.SetKeyFrame(3.0f, new Vector3(-30.0f, 5.0f, 30.0f)); positionAnimation.SetKeyFrame(4.0f, new Vector3(-30.0f, 5.0f, -30.0f)); // Set position animation lightAnimation.AddAttributeAnimation("Position", positionAnimation, WrapMode.WM_LOOP, 1f); // Create text animation /* ValueAnimation textAnimation=new ValueAnimation(); textAnimation.SetKeyFrame(0.0f, "WHITE"); textAnimation.SetKeyFrame(1.0f, "RED"); textAnimation.SetKeyFrame(2.0f, "YELLOW"); textAnimation.SetKeyFrame(3.0f, "GREEN"); textAnimation.SetKeyFrame(4.0f, "WHITE"); var uiElement = UI.Root.GetChild("animatingText", false); uiElement.SetAttributeAnimation("Text", textAnimation, WrapMode.Loop, 1f); */ // Create light color animation ValueAnimation colorAnimation=new ValueAnimation(); colorAnimation.SetKeyFrame(0.0f, Color.White); colorAnimation.SetKeyFrame(1.0f, Color.Red); colorAnimation.SetKeyFrame(2.0f, Color.Yellow); colorAnimation.SetKeyFrame(3.0f, Color.Green); colorAnimation.SetKeyFrame(4.0f, Color.White); // Set Light component's color animation lightAnimation.AddAttributeAnimation("@Light/Color", colorAnimation, WrapMode.WM_LOOP, 1f); // Apply light animation to light node lightNode.ObjectAnimation=lightAnimation; // Create more StaticModel objects to the scene, randomly positioned, rotated and scaled. For rotation, we construct a // quaternion from Euler angles where the Y angle (rotation about the Y axis) is randomized. The mushroom model contains // LOD levels, so the StaticModel component will automatically select the LOD level according to the view distance (you'll // see the model get simpler as it moves further away). Finally, rendering a large number of the same object with the // same material allows instancing to be used, if the GPU supports it. This reduces the amount of CPU work in rendering the // scene. const uint numObjects = 200; for (uint i = 0; i < numObjects; ++i) { Node mushroomNode = scene.CreateChild("Mushroom"); mushroomNode.Position = (new Vector3(NextRandom(90.0f) - 45.0f, 0.0f, NextRandom(90.0f) - 45.0f)); mushroomNode.Rotation=new Quaternion(0.0f, NextRandom(360.0f), 0.0f); mushroomNode.SetScale(0.5f + NextRandom(2.0f)); StaticModel mushroomObject = mushroomNode.CreateComponent<StaticModel>(); mushroomObject.Model = (cache.Get<Model>("Models/Mushroom.mdl")); mushroomObject.SetMaterial(cache.Get<Material>("Materials/Mushroom.xml")); } // Create a scene node for the camera, which we will move around // The camera will use default settings (1000 far clip distance, 45 degrees FOV, set aspect ratio automatically) CameraNode = scene.CreateChild("Camera"); CameraNode.CreateComponent<Camera>(); // Set an initial position for the camera scene node above the plane CameraNode.Position = (new Vector3(0.0f, 5.0f, 0.0f)); }
void CreateScene() { var cache = GetSubsystem<ResourceCache>(); scene = new Scene(); // Create the Octree component to the scene. This is required before adding any drawable components, or else nothing will // show up. The default octree volume will be from (-1000, -1000, -1000) to (1000, 1000, 1000) in world coordinates; it // is also legal to place objects outside the volume but their visibility can then not be checked in a hierarchically // optimizing manner scene.CreateComponent<Octree>(); // Create a child scene node (at world origin) and a StaticModel component into it. Set the StaticModel to show a simple // plane mesh with a "stone" material. Note that naming the scene nodes is optional. Scale the scene node larger // (100 x 100 world units) Node planeNode = scene.CreateChild("Plane"); planeNode.Scale=new Vector3(100.0f, 1.0f, 100.0f); StaticModel planeObject = planeNode.CreateComponent<StaticModel>(); planeObject.Model = (cache.Get<Model>("Models/Plane.mdl")); planeObject.SetMaterial(cache.Get<Material>("Materials/StoneTiled.xml")); // Create a directional light to the world so that we can see something. The light scene node's orientation controls the // light direction; we will use the SetDirection() function which calculates the orientation from a forward direction vector. // The light will use default settings (white light, no shadows) Node lightNode = scene.CreateChild("DirectionalLight"); lightNode.SetDirection(new Vector3(0.6f, -1.0f, 0.8f)); // The direction vector does not need to be normalized Light light = lightNode.CreateComponent<Light>(); light.LightType = LightType.LIGHT_DIRECTIONAL; // Create more StaticModel objects to the scene, randomly positioned, rotated and scaled. For rotation, we construct a // quaternion from Euler angles where the Y angle (rotation about the Y axis) is randomized. The mushroom model contains // LOD levels, so the StaticModel component will automatically select the LOD level according to the view distance (you'll // see the model get simpler as it moves further away). Finally, rendering a large number of the same object with the // same material allows instancing to be used, if the GPU supports it. This reduces the amount of CPU work in rendering the // scene. Material mushroomMat = cache.Get<Material>("Materials/Mushroom.xml"); // Apply shader parameter animation to material ValueAnimation specColorAnimation=new ValueAnimation(); specColorAnimation.SetKeyFrame(0.0f, new Color(0.1f, 0.1f, 0.1f, 16.0f)); specColorAnimation.SetKeyFrame(1.0f, new Color(1.0f, 0.0f, 0.0f, 2.0f)); specColorAnimation.SetKeyFrame(2.0f, new Color(1.0f, 1.0f, 0.0f, 2.0f)); specColorAnimation.SetKeyFrame(3.0f, new Color(0.1f, 0.1f, 0.1f, 16.0f)); // Optionally associate material with scene to make sure shader parameter animation respects scene time scale mushroomMat.Scene=scene; mushroomMat.SetShaderParameterAnimation("MatSpecColor", specColorAnimation, WrapMode.WM_LOOP, 1.0f); const uint numObjects = 200; for (uint i = 0; i < numObjects; ++i) { Node mushroomNode = scene.CreateChild("Mushroom"); mushroomNode.Position = (new Vector3(NextRandom(90.0f) - 45.0f, 0.0f, NextRandom(90.0f) - 45.0f)); mushroomNode.Rotation=new Quaternion(0.0f, NextRandom(360.0f), 0.0f); mushroomNode.SetScale(0.5f + NextRandom(2.0f)); StaticModel mushroomObject = mushroomNode.CreateComponent<StaticModel>(); mushroomObject.Model = (cache.Get<Model>("Models/Mushroom.mdl")); mushroomObject.SetMaterial(mushroomMat); } // Create a scene node for the camera, which we will move around // The camera will use default settings (1000 far clip distance, 45 degrees FOV, set aspect ratio automatically) CameraNode = scene.CreateChild("Camera"); CameraNode.CreateComponent<Camera>(); // Set an initial position for the camera scene node above the plane CameraNode.Position = (new Vector3(0.0f, 5.0f, 0.0f)); }