static void Main(string[] args) { Console.WriteLine("You are runnning the Algorithms tutorial."); Console.WriteLine("======================================================"); Console.WriteLine(); #region Sorting { Console.WriteLine(" Sorting Algorithms----------------------"); Console.WriteLine(); int[] dataSet = new int[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; Console.Write(" Data Set:"); Console.Write(dataSet[0]); for (int i = 1; i < dataSet.Length; i++) { Console.Write(", " + dataSet[i]); } Console.WriteLine(); // if you want to sort non-array types, see the overloads using Get<int> and Assign<int> // Delegates //Get<int> get = (int index) => { return dataSet[index]; }; //Assign<int> assign = (int index, int value) => { dataSet[index] = value; }; // Shuffling (Randomizing) Sort <int> .Shuffle(dataSet); Console.Write(" Shuffle (Randomizing): "); Console.Write(dataSet[0]); for (int i = 1; i < dataSet.Length; i++) { Console.Write(", " + dataSet[i]); } Console.WriteLine(); // Bubble Sort <int> .Bubble(dataSet); Console.Write(" Bubble: "); Console.Write(dataSet[0]); for (int i = 1; i < dataSet.Length; i++) { Console.Write(", " + dataSet[i]); } Console.WriteLine(); Console.WriteLine(" shuffling dataSet..."); Sort <int> .Shuffle(dataSet); // Selection Sort <int> .Selection(dataSet); Console.Write(" Selection: "); Console.Write(dataSet[0]); for (int i = 1; i < dataSet.Length; i++) { Console.Write(", " + dataSet[i]); } Console.WriteLine(); Console.WriteLine(" shuffling dataSet..."); Sort <int> .Shuffle(dataSet); // Insertion Sort <int> .Insertion(dataSet); Console.Write(" Insertion: "); Console.Write(dataSet[0]); for (int i = 1; i < dataSet.Length; i++) { Console.Write(", " + dataSet[i]); } Console.WriteLine(); Console.WriteLine(" shuffling dataSet..."); Sort <int> .Shuffle(dataSet); // Quick Sort <int> .Quick(dataSet); Console.Write(" Quick: "); Console.Write(dataSet[0]); for (int i = 1; i < dataSet.Length; i++) { Console.Write(", " + dataSet[i]); } Console.WriteLine(); Console.WriteLine(" shuffling dataSet..."); Sort <int> .Shuffle(dataSet); // Merge Sort <int> .Merge(Compute <int> .Compare, dataSet); Console.Write(" Merge: "); Console.Write(dataSet[0]); for (int i = 1; i < dataSet.Length; i++) { Console.Write(", " + dataSet[i]); } Console.WriteLine(); Console.WriteLine(" shuffling dataSet..."); Sort <int> .Shuffle(dataSet); // Heap Sort <int> .Heap(Compute <int> .Compare, dataSet); Console.Write(" Heap: "); Console.Write(dataSet[0]); for (int i = 1; i < dataSet.Length; i++) { Console.Write(", " + dataSet[i]); } Console.WriteLine(); Console.WriteLine(" shuffling dataSet..."); Sort <int> .Shuffle(dataSet); // OddEven Sort <int> .OddEven(Compute <int> .Compare, dataSet); Console.Write(" OddEven: "); Console.Write(dataSet[0]); for (int i = 1; i < dataSet.Length; i++) { Console.Write(", " + dataSet[i]); } Console.WriteLine(); //Sort<int>.Shuffle(get, set, 0, dataSet.Length); //// Slow //Sort<int>.Slow(Logic.compare, get, set, 0, dataSet.Length); //Console.Write("Slow: "); //Console.Write(dataSet[0]); //for (int i = 1; i < dataSet.Length; i++) // Console.Write(", " + dataSet[i]); //Console.WriteLine(); Sort <int> .Shuffle(dataSet); // Bogo //Sort<int>.Bogo(Logic.compare, get, set, 0, dataSet.Length); Console.Write(" Bogo: Enable (uncomment) in Source Code"); //Console.Write(dataSet[0]); //for (int i = 1; i < dataSet.Length; i++) // Console.Write(", " + dataSet[i]); //Console.WriteLine(); Console.WriteLine(); Console.WriteLine(); } #endregion #region Graph Search { Console.WriteLine(" Graph Searching----------------------"); Console.WriteLine(); // make a graph Graph <int> graph = new GraphSetOmnitree <int>( Compare.Default, Hash.Default); // add nodes graph.Add(0); graph.Add(1); graph.Add(2); graph.Add(3); // add edges graph.Add(0, 1); graph.Add(0, 2); graph.Add(1, 3); graph.Add(2, 3); //// represent a graph //// Note: can be any type (doesn't have to be int?[,]) //int?[,] adjacencyMatrix = //{ // { null, 1, 2, null }, // { null, null, null, 5 }, // { null, null, null, 1 }, // { null, null, null, null } //}; // make a delegate for finding neighbor nodes Action <int, Step <int> > neighbors = (int current, Step <int> step_function) => { //for (int i = 0; i < 4; i++) // if (adjacencyMatrix[current, i] != null) // step(i); graph.Neighbors(current, step_function); }; // make a delegate for computing heuristics Func <int, int> heuristic = (int node) => { switch (node) { case 0: return(3); case 1: return(6); case 2: return(1); case 3: return(0); default: throw new NotImplementedException(); } }; // make a delegate for computing costs Func <int, int, int> cost = (int from, int to) => { if (from == 0 && to == 1) { return(1); } if (from == 0 && to == 2) { return(2); } if (from == 1 && to == 3) { return(5); } if (from == 2 && to == 3) { return(1); } if (from == 0 && to == 3) { return(99); } throw new Exception("invalid path cost computation"); }; // make a delegate for determining if the goal is reached Func <int, bool> goal = (int node) => { if (node == 3) { return(true); } else { return(false); } }; // run A* the algorithm Stepper <int> aStar_path = Search <int> .Graph <int> .Astar( 0, graph, new Search <int> .Graph <int> .Heuristic(heuristic), new Search <int> .Graph <int> .Cost(cost), new Search <int> .Graph <int> .Goal(goal)); // run the Greedy algorithm Stepper <int> greedy_path = Search <int> .Graph <int> .Greedy( 0, graph, new Search <int> .Graph <int> .Heuristic(heuristic), new Search <int> .Graph <int> .Goal(goal)); Console.Write(" A* Path: "); if (aStar_path != null) { aStar_path((int i) => { System.Console.Write(i + " "); }); } else { Console.Write(" none"); } Console.WriteLine(); Console.Write(" Greedy Path: "); if (greedy_path != null) { greedy_path((int i) => { System.Console.Write(i + " "); }); } else { Console.Write(" none"); } Console.WriteLine(); Console.WriteLine(); } #endregion #region Graph Search (Vector Game-Style Example) // Lets say you are coding enemy AI and you want the AI to find a path towards the player // in order to attack them. Here are their starting positions: Vector <float> enemy_location = new Vector <float>(-100, 0, -50); Vector <float> player_location = new Vector <float>(200, 0, -50); float enemy_attack_range = 2; // enemy has a melee attack with 2 range // Lets say most of the terrain is open, but there is a big rock in between them that they // must go around. Vector <float> rock_location = new Vector <float>(15, 0, -40); float rock_radius = 20; // So, we just need to validate movement locations (make sure the path finding algorithm // ignores locations inside the rock) Func <Vector <float>, bool> validateMovementLocation = location => { if ((location - rock_location).Magnitude() <= rock_radius) { return(false); // inside rock (not valid) } return(true); // not inside rock (valid) // NOTE: // This function will normally be handled by your physics engine if you are running one. }; // Make sure we don't re-use locations (must be wiped after running the algorithm) Set <Vector <float> > already_used = new SetHashList <Vector <float> >(); // Now we need the neighbor function (getting the neighbors of the current location). Search <Vector <float> > .Graph <float> .Neighbors neighborFunction = (currentLocation, neighbors) => { // lets make a simple neighbor function that returns 4 locations (directly north, south, east, and west) // and the distance of each node in the graph will be 1 Vector <float> north = new Vector <float>(currentLocation.X + 1, currentLocation.Y, currentLocation.Z), east = new Vector <float>(currentLocation.X, currentLocation.Y, currentLocation.Z + 1), south = new Vector <float>(currentLocation.X - 1, currentLocation.Y, currentLocation.Z), west = new Vector <float>(currentLocation.X, currentLocation.Y, currentLocation.Z - 1); // validate the locations (not inside the rock) and make sure we have not already traversed the location if (validateMovementLocation(north) && !already_used.Contains(north)) { already_used.Add(north); // mark for usage so we do not use this location again neighbors(north); } if (validateMovementLocation(east) && !already_used.Contains(east)) { already_used.Add(east); // mark for usage so we do not use this location again neighbors(east); } if (validateMovementLocation(south) && !already_used.Contains(south)) { already_used.Add(south); // mark for usage so we do not use this location again neighbors(south); } if (validateMovementLocation(west) && !already_used.Contains(west)) { already_used.Add(west); // mark for usage so we do not use this location again neighbors(west); } // NOTES: // - This neighbor function has a 90 degree per-node resolution (360 / 4 [north/south/east/west] = 90). // - This neighbor function has a 1 unit per-node resolution, because we went 1 unit in each direction. // RECOMMENDATIONS: // - If the path finding is failing, you may need to increase the resolution. // - If the algorithm is running too slow, you may need to reduce the resolution. }; // Now we need the heuristic function (how close are we to the goal). Search <Vector <float> > .Graph <float> .Heuristic heuristicFunction = currentLocation => { // The goal is the player's location, so we just need our distance from the player. return((currentLocation - player_location).Magnitude()); }; // Lets say there is a lot of mud around the rock, and the mud makes our player move at half their normal speed. // Our path finding needs to find the fastest route to the player, whether it be through the mud or not. Vector <float> mud_location = new Vector <float>(15, 0, -70); float mud_radius = 30; // Now we need the cost function Search <Vector <float> > .Graph <float> .Cost costFunction = (location1, location2) => { // If either locations are in the mud, lets increase the cost of moving to that spot. if ((location1 - mud_location).Magnitude() <= mud_radius) { return(2); } if ((location2 - mud_location).Magnitude() <= mud_radius) { return(2); } // neither location is in the mud, it is just a standard movement at normal speed. return(1); }; // Now we need a goal function Search <Vector <float> > .Graph <float> .Goal goalFunction = currentLocation => { // if the player is within the enemy's attack range WE FOUND A PATH! :) if ((currentLocation - player_location).Magnitude() <= enemy_attack_range) { return(true); } // the enemy is not yet within attack range return(false); }; // We have all the necessary parameters. Run the pathfinding algorithms! Stepper <Vector <float> > aStarPath = Search <Vector <float> > .Graph <float> .Astar( enemy_location, neighborFunction, heuristicFunction, costFunction, goalFunction); // NOTE: // if the "Astar" function returns "null" there is no valid path. (in this example there // are valid paths, so I didn't add a nul check) // Here is the path converted to an array (easier to read while debugging) Vector <float>[] aStarPath_array = aStarPath.ToArray(); // flush the duplicate locations checker before running the Greedy algorithm already_used.Clear(); Stepper <Vector <float> > greedyPath = Search <Vector <float> > .Graph <float> .Greedy( enemy_location, neighborFunction, heuristicFunction, goalFunction); // Here is the path converted to an array (easier to read while debugging) Vector <float>[] greedyPath_array = greedyPath.ToArray(); // lets calculate the movement cost of each path float total_cost_astar = Compute <float> .Add(step => { for (int i = 0; i < aStarPath_array.Length - 1; i++) { float cost = costFunction(aStarPath_array[i], aStarPath_array[i + 1]); step(cost); } }); float total_cost_greedy = Compute <float> .Add(step => { for (int i = 0; i < greedyPath_array.Length - 1; i++) { float cost = costFunction(greedyPath_array[i], greedyPath_array[i + 1]); step(cost); } }); // Notice that that the A* algorithm produces a less costly path than the Greedy, // meaning that it is faster. The Greedy path went through the mud, but the A* path // took the longer route around the other side of the rock, which ended up being faster // than running through the mud. #endregion #region Random Generation Console.WriteLine(" Random Generation---------------------"); Console.WriteLine(); int iterationsperrandom = 3; Action <Random> testrandom = (Random random) => { for (int i = 0; i < iterationsperrandom; i++) { Console.WriteLine(" " + i + ": " + random.Next()); } Console.WriteLine(); }; Arbitrary mcg_2pow59_13pow13 = new Arbitrary.Algorithms.MultiplicativeCongruent_A(); Console.WriteLine(" mcg_2pow59_13pow13 randoms:"); testrandom(mcg_2pow59_13pow13); Arbitrary mcg_2pow31m1_1132489760 = new Arbitrary.Algorithms.MultiplicativeCongruent_B(); Console.WriteLine(" mcg_2pow31m1_1132489760 randoms:"); testrandom(mcg_2pow31m1_1132489760); Arbitrary mersenneTwister = new Arbitrary.Algorithms.MersenneTwister(); Console.WriteLine(" mersenneTwister randoms:"); testrandom(mersenneTwister); Arbitrary cmr32_c2_o3 = new Arbitrary.Algorithms.CombinedMultipleRecursive(); Console.WriteLine(" mersenneTwister randoms:"); testrandom(cmr32_c2_o3); Arbitrary wh1982cmcg = new Arbitrary.Algorithms.WichmannHills1982(); Console.WriteLine(" mersenneTwister randoms:"); testrandom(wh1982cmcg); Arbitrary wh2006cmcg = new Arbitrary.Algorithms.WichmannHills2006(); Console.WriteLine(" mersenneTwister randoms:"); testrandom(wh2006cmcg); Arbitrary mwcxorsg = new Arbitrary.Algorithms.MultiplyWithCarryXorshift(); Console.WriteLine(" mwcxorsg randoms:"); testrandom(mwcxorsg); #endregion Console.WriteLine(); Console.WriteLine("============================================"); Console.WriteLine("Example Complete..."); Console.ReadLine(); }