public static IReadOnlyDictionary <GraphNode <T>, GraphNode <T> > RunDijkstraFrom(UndirectedGraph <T> graph, T src) { if (!graph.Nodes.TryGetValue(new GraphNode <T>(src), out var source)) { return(null); } var predecessors = new Dictionary <GraphNode <T>, GraphNode <T> >();//keeps track of the shortest path predecessor //using Dijkstra's algorithm var priorityQ = new MinHeap <GraphNode <T> >(new GraphNode <T>(default(T))); foreach (var node in graph.Nodes) { node.Weight = source.Equals(node) ? 0 : int.MaxValue; priorityQ.Add(node); predecessors[source] = null; } while (priorityQ.Count != 0) { var minNode = priorityQ.GetMin(); minNode.Color = Color.Colored;//indicating that these nodes are done if (!graph.Neighbors.ContainsKey(minNode)) { priorityQ.ExtractMin(); continue; } foreach (var neighbor in graph.Neighbors[minNode]) { graph.Nodes.TryGetValue(neighbor, out var neighborNode); if (neighborNode.Color == Color.Colored) { continue; } var edge = graph.GetEdge(minNode, neighbor); //if (!graph.Edges.TryGetValue(new Edge<T>(minNode, neighbor), out var edge)) // throw new InvalidDataException($"failed to find edge to neighbor {minNode.Label}->{neighbor.Label}"); if (neighborNode.Weight > minNode.Weight + edge.Weight) { neighborNode.Weight = minNode.Weight + edge.Weight; predecessors[neighborNode] = minNode; } } priorityQ.ExtractMin(); } return(predecessors); }
public void MinHeap_Test() { var minHeap = new MinHeap <int>(); minHeap.Insert(5); minHeap.Insert(3); minHeap.Insert(1); minHeap.Insert(4); minHeap.Insert(2); var result = minHeap.ExtractMin(); Assert.That(result, Is.EqualTo(1)); var secondResult = minHeap.ExtractMin(); Assert.That(secondResult, Is.EqualTo(2)); }
//for directed Graph public static IReadOnlyDictionary <GraphNode <T>, GraphNode <T> > RunDijkstraFrom(DirectedGraph <T> graph, T src) { if (!graph.Nodes.TryGetValue(new GraphNode <T>(src), out var source)) { return(null); } var predecessors = new Dictionary <GraphNode <T>, GraphNode <T> >();//keeps track of the shortest path predecessor //using Dijkstra's algorithm var priorityQ = new MinHeap <GraphNode <T> >(new GraphNode <T>(default(T))); foreach (var node in graph.Nodes) { node.Weight = source.Equals(node) ? 0 : int.MaxValue; priorityQ.Add(node); predecessors[source] = null; } while (priorityQ.Count != 0) { var minNode = priorityQ.GetMin(); if (!graph.Neighbors.ContainsKey(minNode)) { priorityQ.ExtractMin(); continue; } foreach (var neighbor in graph.Neighbors[minNode]) { graph.Nodes.TryGetValue(neighbor, out var neighborNode); var edges = graph.GetEdges(minNode, neighbor); foreach (var edge in edges) { if (neighborNode.Weight > minNode.Weight + edge.Weight) { neighborNode.Weight = minNode.Weight + edge.Weight; predecessors[neighborNode] = minNode; } } } priorityQ.ExtractMin(); } return(predecessors); }
/// <summary> /// Runtime O(n * log(n)) /// </summary> /// <returns>The kth smallest.</returns> /// <param name="arr">Arr.</param> /// <param name="k">K.</param> public int FindKthSmallest(int[] arr, int k) { // push into a heap var minHeap = new MinHeap <int>(); for (var i = 0; i < arr.Length; i++) { minHeap.Insert(arr[i]); } // what is insert run time for a heap - log(n) var min = int.MaxValue; for (int i = 0; i < k; i++) { min = minHeap.ExtractMin(); } return(min); }