예제 #1
0
        private static double GetDistance(IPoint2 ip1, IPoint2 ip2)
        {
            float sum = 0.0f;

            for (int i = 0; i < 64; ++i)
            {
                sum += (ip1.descriptor[i] - ip2.descriptor[i]) * (ip1.descriptor[i] - ip2.descriptor[i]);
            }
            return(Math.Sqrt(sum));
        }
예제 #2
0
        private const float FLT_MAX = 3.402823466e+38F;        /* max value */

        public static List <IPoint2>[] getMatches(List <IPoint2> ipts1, List <IPoint2> ipts2)
        {
            double  dist;
            double  d1, d2;
            IPoint2 match = new IPoint2();

            List <IPoint2>[] matches = new List <IPoint2> [2];
            matches[0] = new List <IPoint2>();
            matches[1] = new List <IPoint2>();

            for (int i = 0; i < ipts1.Count; i++)
            {
                d1 = d2 = FLT_MAX;

                for (int j = 0; j < ipts2.Count; j++)
                {
                    dist = GetDistance(ipts1[i], ipts2[j]);

                    if (dist < d1) // if this feature matches better than current best
                    {
                        d2    = d1;
                        d1    = dist;
                        match = ipts2[j];
                    }
                    else if (dist < d2) // this feature matches better than second best
                    {
                        d2 = dist;
                    }
                }

                // If match has a d1:d2 ratio < 0.65 ipoints are a match
                if (d1 / d2 < 0.77) //越小Match点越少
                {
                    matches[0].Add(ipts1[i]);
                    matches[1].Add(match);
                }
            }
            return(matches);
        }
예제 #3
0
        /// <summary>
        /// Interpolate scale-space extrema to subpixel accuracy to form an image feature
        /// </summary>
        /// <param name="r"></param>
        /// <param name="c"></param>
        /// <param name="t"></param>
        /// <param name="m"></param>
        /// <param name="b"></param>
        void interpolateExtremum(int r, int c, ResponseLayer t, ResponseLayer m, ResponseLayer b)
        {
            Matrix D = Matrix.Create(BuildDerivative(r, c, t, m, b));
            Matrix H = Matrix.Create(BuildHessian(r, c, t, m, b));
            Matrix Hi = H.Inverse();
            Matrix Of = -1 * Hi * D;

            // get the offsets from the interpolation
            double[] O = { Of[0, 0], Of[1, 0], Of[2, 0] };

            // get the step distance between filters
            int filterStep = (m.filter - b.filter);

            // If point is sufficiently close to the actual extremum
            if (Math.Abs(O[0]) < 0.5f && Math.Abs(O[1]) < 0.5f && Math.Abs(O[2]) < 0.5f)
            {
                IPoint2 ipt = new IPoint2();
                ipt.x = (float)((c + O[0]) * t.step);
                ipt.y = (float)((r + O[1]) * t.step);
                ipt.scale = (float)((0.1333f) * (m.filter + O[2] * filterStep));
                ipt.laplacian = (int)(m.getLaplacian(r, c, t));
                ipts.Add(ipt);
            }
        }
예제 #4
0
        /// <summary>
        /// Determine dominant orientation for InterestPoint
        /// </summary>
        /// <param name="ip"></param>
        void GetOrientation(IPoint2 ip)
        {
            const byte Responses = 109;

            float[] resX = new float[Responses];
            float[] resY = new float[Responses];
            float[] Ang  = new float[Responses];
            int     idx  = 0;

            int[] id = { 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6 };

            // Get rounded InterestPoint data
            int X = (int)Math.Round(ip.x, 0);
            int Y = (int)Math.Round(ip.y, 0);
            int S = (int)Math.Round(ip.scale, 0);

            // calculate haar responses for points within radius of 6*scale
            for (int i = -6; i <= 6; ++i)
            {
                for (int j = -6; j <= 6; ++j)
                {
                    if (i * i + j * j < 36)
                    {
                        float gauss = gauss25[id[i + 6], id[j + 6]];
                        resX[idx] = gauss * img.HaarX(Y + j * S, X + i * S, 4 * S);
                        resY[idx] = gauss * img.HaarY(Y + j * S, X + i * S, 4 * S);
                        Ang[idx]  = (float)GetAngle(resX[idx], resY[idx]);
                        ++idx;
                    }
                }
            }

            // calculate the dominant direction
            float sumX, sumY, max = 0, orientation = 0;
            float ang1, ang2;
            float pi = (float)Math.PI;

            // loop slides pi/3 window around feature point
            for (ang1 = 0; ang1 < 2 * pi; ang1 += 0.15f)
            {
                ang2 = (ang1 + pi / 3f > 2 * pi ? ang1 - 5 * pi / 3f : ang1 + pi / 3f);
                sumX = sumY = 0;

                for (int k = 0; k < Responses; ++k)
                {
                    // determine whether the point is within the window
                    if (ang1 < ang2 && ang1 < Ang[k] && Ang[k] < ang2)
                    {
                        sumX += resX[k];
                        sumY += resY[k];
                    }
                    else if (ang2 < ang1 &&
                             ((Ang[k] > 0 && Ang[k] < ang2) || (Ang[k] > ang1 && Ang[k] < pi)))
                    {
                        sumX += resX[k];
                        sumY += resY[k];
                    }
                }

                // if the vector produced from this window is longer than all
                // previous vectors then this forms the new dominant direction
                if (sumX * sumX + sumY * sumY > max)
                {
                    // store largest orientation
                    max         = sumX * sumX + sumY * sumY;
                    orientation = (float)GetAngle(sumX, sumY);
                }
            }

            // assign orientation of the dominant response vector
            ip.orientation = (float)orientation;
        }
예제 #5
0
        /// <summary>
        /// Construct descriptor vector for this interest point
        /// </summary>
        /// <param name="bUpright"></param>
        void GetDescriptor(IPoint2 ip, bool bUpright, bool bExtended)
        {
            int   sample_x, sample_y, count = 0;
            int   i = 0, ix = 0, j = 0, jx = 0, xs = 0, ys = 0;
            float dx, dy, mdx, mdy, co, si;
            float dx_yn, mdx_yn, dy_xn, mdy_xn;
            float gauss_s1 = 0f, gauss_s2 = 0f;
            float rx = 0f, ry = 0f, rrx = 0f, rry = 0f, len = 0f;
            float cx = -0.5f, cy = 0f; //Subregion centers for the 4x4 gaussian weighting

            // Get rounded InterestPoint data
            int X = (int)Math.Round(ip.x, 0);
            int Y = (int)Math.Round(ip.y, 0);
            int S = (int)Math.Round(ip.scale, 0);

            // Allocate descriptor memory
            ip.SetDescriptorLength(64);

            if (bUpright)
            {
                co = 1;
                si = 0;
            }
            else
            {
                co = (float)Math.Cos(ip.orientation);
                si = (float)Math.Sin(ip.orientation);
            }

            //Calculate descriptor for this interest point
            i = -8;
            while (i < 12)
            {
                j = -8;
                i = i - 4;

                cx += 1f;
                cy  = -0.5f;

                while (j < 12)
                {
                    cy += 1f;

                    j = j - 4;

                    ix = i + 5;
                    jx = j + 5;

                    dx    = dy = mdx = mdy = 0f;
                    dx_yn = mdx_yn = dy_xn = mdy_xn = 0f;

                    xs = (int)Math.Round(X + (-jx * S * si + ix * S * co), 0);
                    ys = (int)Math.Round(Y + (jx * S * co + ix * S * si), 0);

                    // zero the responses
                    dx    = dy = mdx = mdy = 0f;
                    dx_yn = mdx_yn = dy_xn = mdy_xn = 0f;

                    for (int k = i; k < i + 9; ++k)
                    {
                        for (int l = j; l < j + 9; ++l)
                        {
                            //Get coords of sample point on the rotated axis
                            sample_x = (int)Math.Round(X + (-l * S * si + k * S * co), 0);
                            sample_y = (int)Math.Round(Y + (l * S * co + k * S * si), 0);

                            //Get the gaussian weighted x and y responses
                            gauss_s1 = Gaussian(xs - sample_x, ys - sample_y, 2.5f * S);
                            rx       = (float)img.HaarX(sample_y, sample_x, 2 * S);
                            ry       = (float)img.HaarY(sample_y, sample_x, 2 * S);

                            //Get the gaussian weighted x and y responses on rotated axis
                            rrx = gauss_s1 * (-rx * si + ry * co);
                            rry = gauss_s1 * (rx * co + ry * si);


                            if (bExtended)
                            {
                                // split x responses for different signs of y
                                if (rry >= 0)
                                {
                                    dx  += rrx;
                                    mdx += Math.Abs(rrx);
                                }
                                else
                                {
                                    dx_yn  += rrx;
                                    mdx_yn += Math.Abs(rrx);
                                }

                                // split y responses for different signs of x
                                if (rrx >= 0)
                                {
                                    dy  += rry;
                                    mdy += Math.Abs(rry);
                                }
                                else
                                {
                                    dy_xn  += rry;
                                    mdy_xn += Math.Abs(rry);
                                }
                            }
                            else
                            {
                                dx  += rrx;
                                dy  += rry;
                                mdx += Math.Abs(rrx);
                                mdy += Math.Abs(rry);
                            }
                        }
                    }

                    //Add the values to the descriptor vector
                    gauss_s2 = Gaussian(cx - 2f, cy - 2f, 1.5f);

                    ip.descriptor[count++] = dx * gauss_s2;
                    ip.descriptor[count++] = dy * gauss_s2;
                    ip.descriptor[count++] = mdx * gauss_s2;
                    ip.descriptor[count++] = mdy * gauss_s2;

                    // add the extended components
                    if (bExtended)
                    {
                        ip.descriptor[count++] = dx_yn * gauss_s2;
                        ip.descriptor[count++] = dy_xn * gauss_s2;
                        ip.descriptor[count++] = mdx_yn * gauss_s2;
                        ip.descriptor[count++] = mdy_xn * gauss_s2;
                    }

                    len += (dx * dx + dy * dy + mdx * mdx + mdy * mdy
                            + dx_yn + dy_xn + mdx_yn + mdy_xn) * gauss_s2 * gauss_s2;

                    j += 9;
                }
                i += 9;
            }

            //Convert to Unit Vector
            len = (float)Math.Sqrt((double)len);
            if (len > 0)
            {
                for (int d = 0; d < ip.descriptorLength; ++d)
                {
                    ip.descriptor[d] /= len;
                }
            }
        }