Compute() 공개 메소드

Computes the network's outputs for a given input.
public Compute ( double input ) : double[]
input double The input vector.
리턴 double[]
예제 #1
2
        public void ExampleTest1()
        {
            Accord.Math.Tools.SetupGenerator(0);

            // We'll use a simple XOR function as input. 

            double[][] inputs =
            { 
                new double[] { 0, 0 }, // 0 xor 0
                new double[] { 0, 1 }, // 0 xor 1
                new double[] { 1, 0 }, // 1 xor 0
                new double[] { 1, 1 }, // 1 xor 1
            };

            // XOR output, corresponding to the input.
            double[][] outputs = 
            {
                new double[] { 0 }, // 0 xor 0 = 0
                new double[] { 1 }, // 0 xor 1 = 1
                new double[] { 1 }, // 1 xor 0 = 1
                new double[] { 0 }, // 1 xor 1 = 0
            };

            // Setup the deep belief network (2 inputs, 3 hidden, 1 output)
            DeepBeliefNetwork network = new DeepBeliefNetwork(2, 3, 1);

            // Initialize the network with Gaussian weights
            new GaussianWeights(network, 0.1).Randomize();

            // Update the visible layer with the new weights
            network.UpdateVisibleWeights();


            // Setup the learning algorithm.
            DeepBeliefNetworkLearning teacher = new DeepBeliefNetworkLearning(network)
            {
                Algorithm = (h, v, i) => new ContrastiveDivergenceLearning(h, v)
                {
                    LearningRate = 0.1,
                    Momentum = 0.5,
                    Decay = 0.001,
                }
            };



            // Unsupervised learning on each hidden layer, except for the output.
            for (int i = 0; i < network.Layers.Length - 1; i++)
            {
                teacher.LayerIndex = i;

                // Compute the learning data with should be used
                var layerInput = teacher.GetLayerInput(inputs);

                // Train the layer iteratively
                for (int j = 0; j < 5000; j++)
                    teacher.RunEpoch(layerInput);
            }



            // Supervised learning on entire network, to provide output classification.
            var backpropagation = new BackPropagationLearning(network)
            {
                LearningRate = 0.1,
                Momentum = 0.5
            };

            // Run supervised learning.
            for (int i = 0; i < 5000; i++)
                backpropagation.RunEpoch(inputs, outputs);


            // Test the resulting accuracy.
            int correct = 0;
            for (int i = 0; i < inputs.Length; i++)
            {
                double[] outputValues = network.Compute(inputs[i]);
                double outputResult = outputValues.First() >= 0.5 ? 1 : 0;

                if (outputResult == outputs[i].First())
                {
                    correct++;
                }
            }

            Assert.AreEqual(4, correct);
        }
예제 #2
0
        static void Main(string[] args)
        {
            double[][] inputs;
            double[][] outputs;
            double[][] testInputs;
            double[][] testOutputs;

            // Load ascii digits dataset.
            inputs = DataManager.Load(@"../../../data/data.txt", out outputs);

            // The first 500 data rows will be for training. The rest will be for testing.
            testInputs = inputs.Skip(500).ToArray();
            testOutputs = outputs.Skip(500).ToArray();
            inputs = inputs.Take(500).ToArray();
            outputs = outputs.Take(500).ToArray();

            // Setup the deep belief network and initialize with random weights.
            DeepBeliefNetwork network = new DeepBeliefNetwork(inputs.First().Length, 10, 10);
            new GaussianWeights(network, 0.1).Randomize();
            network.UpdateVisibleWeights();
            
            // Setup the learning algorithm.
            DeepBeliefNetworkLearning teacher = new DeepBeliefNetworkLearning(network)
            {
                Algorithm = (h, v, i) => new ContrastiveDivergenceLearning(h, v)
                {
                    LearningRate = 0.1,
                    Momentum = 0.5,
                    Decay = 0.001,
                }
            };

            // Setup batches of input for learning.
            int batchCount = Math.Max(1, inputs.Length / 100);
            // Create mini-batches to speed learning.
            int[] groups = Accord.Statistics.Tools.RandomGroups(inputs.Length, batchCount);
            double[][][] batches = inputs.Subgroups(groups);
            // Learning data for the specified layer.
            double[][][] layerData;

            // Unsupervised learning on each hidden layer, except for the output layer.
            for (int layerIndex = 0; layerIndex < network.Machines.Count - 1; layerIndex++)
            {
                teacher.LayerIndex = layerIndex;
                layerData = teacher.GetLayerInput(batches);
                for (int i = 0; i < 200; i++)
                {
                    double error = teacher.RunEpoch(layerData) / inputs.Length;
                    if (i % 10 == 0)
                    {
                        Console.WriteLine(i + ", Error = " + error);
                    }
                }
            }

            // Supervised learning on entire network, to provide output classification.
            var teacher2 = new BackPropagationLearning(network)
            {
                LearningRate = 0.1,
                Momentum = 0.5
            };

            // Run supervised learning.
            for (int i = 0; i < 500; i++)
            {
                double error = teacher2.RunEpoch(inputs, outputs) / inputs.Length;
                if (i % 10 == 0)
                {
                    Console.WriteLine(i + ", Error = " + error);
                }
            }

            // Test the resulting accuracy.
            int correct = 0;
            for (int i = 0; i < inputs.Length; i++)
            {
                double[] outputValues = network.Compute(testInputs[i]);
                if (DataManager.FormatOutputResult(outputValues) == DataManager.FormatOutputResult(testOutputs[i]))
                {
                    correct++;
                }
            }

            Console.WriteLine("Correct " + correct + "/" + inputs.Length + ", " + Math.Round(((double)correct / (double)inputs.Length * 100), 2) + "%");
            Console.Write("Press any key to quit ..");
            Console.ReadKey();
        }