예제 #1
0
        /// <summary>
        ///   Minimizes the function.
        /// </summary>
        ///
        /// <param name="function">The function to be minimized.</param>
        /// <returns>The minimum value at the solution found.</returns>
        ///
        public double Minimize(QuadraticObjectiveFunction function)
        {
            if (function == null)
            {
                throw new ArgumentNullException("function");
            }

            return(Minimize(function.GetQuadraticTermsMatrix(), function.GetLinearTermsVector()));
        }
        /// <summary>
        ///   Minimizes the function.
        /// </summary>
        /// 
        /// <param name="function">The function to be minimized.</param>
        /// <returns>The minimum value at the solution found.</returns>
        /// 
        public double Minimize(QuadraticObjectiveFunction function)
        {
            if (function == null)
                throw new ArgumentNullException("function");

            double[,] Q = function.GetQuadraticTermsMatrix();
            double[] d = function.GetLinearTermsVector();
            return Minimize(Q, d);
        }
        /// <summary>
        ///   Minimizes the function.
        /// </summary>
        /// 
        /// <param name="function">The function to be minimized.</param>
        /// <returns>The minimum value at the solution found.</returns>
        /// 
        public double Minimize(QuadraticObjectiveFunction function)
        {
            if (function == null)
                throw new ArgumentNullException("function");

            double[,] Q = function.GetQuadraticTermsMatrix();
            double[] d = function.GetLinearTermsVector();
            return Minimize(Q, d);
        }
예제 #4
0
        public void GoldfarbIdnaniConstructorTest9()
        {
            // Solve the following optimization problem:
            //
            //  min f(x) = 2x² + xy + y² - 5y
            // 
            //  s.t.  -x - 3y >= -2
            //        -x -  y >= 0
            //              x >=  0
            //              y >=  0
            //



            double x = 0, y = 0;

            var f = new QuadraticObjectiveFunction(() => 2 * (x * x) + (x * y) + (y * y) - 5 * y);

            List<LinearConstraint> constraints = new List<LinearConstraint>();
            constraints.Add(new LinearConstraint(f, () => -x - 3 * y >= -2));
            constraints.Add(new LinearConstraint(f, () => -x - y >= 0));
            constraints.Add(new LinearConstraint(f, () => x >= 0));
            constraints.Add(new LinearConstraint(f, () => y >= 0));


            GoldfarbIdnaniQuadraticSolver target = new GoldfarbIdnaniQuadraticSolver(2, constraints);

            double[,] expectedA = 
            {
                { -1, -3 },
                { -1, -1 },
                {  1,  0 },
                {  0,  1 },
            };

            double[] expectedb = 
            {
                -2, 0, 0, 0
            };

            double[,] expectedQ = 
            {
                { 4, 1 },
                { 1, 2 },
            };

            double[] expectedd = 
            {
                0, -5
            };

            // Tested against R's QuadProg package
            /*
               Qmat = matrix(c(4,1,1,2),2,2)
               dvec = -c(0, -5)
               Amat =  matrix(c(-1, -3, -1, -1, 1, 0, 0, 1), 2,4)
               bvec = c(-2, 0, 0, 0)
               
               solve.QP(Qmat, dvec, Amat, bvec)
            */

            var actualA = target.ConstraintMatrix;
            var actualb = target.ConstraintValues;
            var actualQ = f.GetQuadraticTermsMatrix();
            var actuald = f.GetLinearTermsVector();

            Assert.IsTrue(expectedA.IsEqual(actualA));
            Assert.IsTrue(expectedb.IsEqual(actualb));
            Assert.IsTrue(expectedQ.IsEqual(actualQ));
            Assert.IsTrue(expectedd.IsEqual(actuald));

            double min = target.Minimize(f);

            double[] solution = target.Solution;

            Assert.AreEqual(0, solution[0], 1e-10);
            Assert.AreEqual(0, solution[1], 1e-10);

            Assert.AreEqual(0.0, min, 1e-10);

            Assert.AreEqual(0, target.Lagrangian[0], 1e-10);
            Assert.AreEqual(5, target.Lagrangian[1], 1e-10);
            Assert.AreEqual(5, target.Lagrangian[2], 1e-10);
            Assert.AreEqual(0, target.Lagrangian[3], 1e-10);


            Assert.IsFalse(Double.IsNaN(min));

            foreach (double v in target.Solution)
                Assert.IsFalse(double.IsNaN(v));

            foreach (double v in target.Lagrangian)
                Assert.IsFalse(double.IsNaN(v));
        }
예제 #5
0
        public void GoldfarbIdnaniConstructorTest8()
        {
            // Solve the following optimization problem:
            //
            //  min f(x) = x² + 2xy + y² - y
            // 
            //  s.t.   x >=  1
            //         y >=  1
            //

            double x = 0, y = 0;

            // http://www.wolframalpha.com/input/?i=min+x%C2%B2+%2B+2xy+%2B+y%C2%B2+-+y%2C+x+%3E%3D+1%2C+y+%3E%3D+1
            var f = new QuadraticObjectiveFunction(() => (x * x) + 2 * (x * y) + (y * y) - y);

            List<LinearConstraint> constraints = new List<LinearConstraint>();
            constraints.Add(new LinearConstraint(f, () => x >= 1));
            constraints.Add(new LinearConstraint(f, () => y >= 1));


            GoldfarbIdnaniQuadraticSolver target = new GoldfarbIdnaniQuadraticSolver(2, constraints);

            double[,] A = 
            {
                { 1, 0 }, 
                { 0, 1 }, 
            };

            double[] b = 
            {
                 1, 
                 1, 
            };

            Assert.IsTrue(A.IsEqual(target.ConstraintMatrix));
            Assert.IsTrue(b.IsEqual(target.ConstraintValues));

            double[,] Q = 
            {   
                { 2, 2 }, 
                { 2, 2 },
            };

            double[] d = { 0, -1 };


            var actualQ = f.GetQuadraticTermsMatrix();
            var actuald = f.GetLinearTermsVector();

            Assert.IsTrue(Q.IsEqual(actualQ));
            Assert.IsTrue(d.IsEqual(actuald));

            bool thrown = false;
            try
            {
                target.Minimize(f);
            }
            catch (NonPositiveDefiniteMatrixException)
            {
                thrown = true;
            }

            Assert.IsTrue(thrown);
        }
예제 #6
0
        public void GoldfarbIdnaniConstructorTest7()
        {
            // Solve the following optimization problem:
            //
            //  min f(x) = 3x² + 2xy + 3y² - y
            // 
            //  s.t.   x >=  1
            //         y >=  1
            //

            double x = 0, y = 0;

            // http://www.wolframalpha.com/input/?i=min+x%C2%B2+%2B+2xy+%2B+y%C2%B2+-+y%2C+x+%3E%3D+1%2C+y+%3E%3D+1
            var f = new QuadraticObjectiveFunction(() => 3 * (x * x) + 2 * (x * y) + 3 * (y * y) - y);

            List<LinearConstraint> constraints = new List<LinearConstraint>();
            constraints.Add(new LinearConstraint(f, () => x >= 1));
            constraints.Add(new LinearConstraint(f, () => y >= 1));


            GoldfarbIdnaniQuadraticSolver target = new GoldfarbIdnaniQuadraticSolver(2, constraints);

            double[,] A = 
            {
                { 1, 0 }, 
                { 0, 1 }, 
            };

            double[] b = 
            {
                 1, 
                 1, 
            };

            Assert.IsTrue(A.IsEqual(target.ConstraintMatrix));
            Assert.IsTrue(b.IsEqual(target.ConstraintValues));

            double[,] Q = 
            {   
                { 6, 2 }, 
                { 2, 6 },
            };

            double[] d = { 0, -1 };


            var actualQ = f.GetQuadraticTermsMatrix();
            var actuald = f.GetLinearTermsVector();

            Assert.IsTrue(Q.IsEqual(actualQ));
            Assert.IsTrue(d.IsEqual(actuald));

            double minValue = target.Minimize(f);
            double[] solution = target.Solution;

            Assert.AreEqual(7, minValue);
            Assert.AreEqual(1, solution[0]);
            Assert.AreEqual(1, solution[1]);

            Assert.AreEqual(8, target.Lagrangian[0], 1e-5);
            Assert.AreEqual(7, target.Lagrangian[1], 1e-5);

            foreach (double v in target.Solution)
                Assert.IsFalse(double.IsNaN(v));

            foreach (double v in target.Lagrangian)
                Assert.IsFalse(double.IsNaN(v));
        }
예제 #7
0
        public void GoldfarbIdnaniConstructorTest4()
        {
            // Solve the following optimization problem:
            //
            //  min f(x) = 2x² - xy + 4y² - 5x - 6y
            // 
            //  s.t.   x - y  ==   5  (x minus y should be equal to 5)
            //             x  >=  10  (x should be greater than or equal to 10)
            //

            var f = new QuadraticObjectiveFunction("2x² - xy + 4y² - 5x - 6y");

            List<LinearConstraint> constraints = new List<LinearConstraint>();
            constraints.Add(new LinearConstraint(f, "x-y = 5"));
            constraints.Add(new LinearConstraint(f, "x >= 10"));


            GoldfarbIdnaniQuadraticSolver target = new GoldfarbIdnaniQuadraticSolver(2, constraints);

            double[,] A = 
            {
                { 1, -1 }, 
                { 1,  0 }, 
            };

            double[] b = 
            {
                 5, 
                10, 
            };

            Assert.IsTrue(A.IsEqual(target.ConstraintMatrix));
            Assert.IsTrue(b.IsEqual(target.ConstraintValues));

            double[,] Q = 
            {   
                { +2*2,  -1   }, 
                {   -1,  +4*2 },
            };

            double[] d = { -5, -6 };


            var actualQ = f.GetQuadraticTermsMatrix();
            var actuald = f.GetLinearTermsVector();

            Assert.IsTrue(Q.IsEqual(actualQ));
            Assert.IsTrue(d.IsEqual(actuald));
        }
예제 #8
0
        public void GoldfarbIdnaniConstructorTest3()
        {
            // Solve the following optimization problem:
            //
            //  min f(x) = 2x² - xy + 4y² - 5x - 6y
            // 
            //  s.t.   x - y  ==   5  (x minus y should be equal to 5)
            //             x  >=  10  (x should be greater than or equal to 10)
            //

            // In this example we will be using some symbolic processing. 
            // The following variables could be initialized to any value.
            double x = 0, y = 0;

            // Create our objective function using a lambda expression
            var f = new QuadraticObjectiveFunction(() => 2 * (x * x) - (x * y) + 4 * (y * y) - 5 * x - 6 * y);

            // Now, create the constraints
            List<LinearConstraint> constraints = new List<LinearConstraint>();
            constraints.Add(new LinearConstraint(f, () => x - y == 5));
            constraints.Add(new LinearConstraint(f, () => x >= 10));

            // Now we create the quadratic programming solver for 2 variables, using the constraints.
            GoldfarbIdnaniQuadraticSolver solver = new GoldfarbIdnaniQuadraticSolver(2, constraints);


            double[,] A = 
            {
                { 1, -1 }, 
                { 1,  0 }, 
            };

            double[] b = 
            {
                 5, 
                10, 
            };

            Assert.IsTrue(A.IsEqual(solver.ConstraintMatrix));
            Assert.IsTrue(b.IsEqual(solver.ConstraintValues));


            double[,] Q = 
            {   
                { +2*2,  -1   }, 
                {   -1,  +4*2 },
            };

            double[] d = { -5, -6 };


            var actualQ = f.GetQuadraticTermsMatrix();
            var actuald = f.GetLinearTermsVector();

            Assert.IsTrue(Q.IsEqual(actualQ));
            Assert.IsTrue(d.IsEqual(actuald));


            // And attempt to solve it.
            double minimumValue = solver.Minimize(f);

        }
        /// <summary>
        ///   Maximizes the function.
        /// </summary>
        /// 
        /// <param name="function">The function to be maximized.</param>
        /// <returns>The maximum value at the solution found.</returns>
        /// 
        public double Maximize(QuadraticObjectiveFunction function)
        {
            if (function == null)
                throw new ArgumentNullException("function");

            return Maximize(function.GetQuadraticTermsMatrix(), function.GetLinearTermsVector());
        }