public void test1() { Console.WriteLine("Running test 1..."); NeuronSettings nSettings = new NeuronSettings(); NeuronLayerSettings layerSettings = new NeuronLayerSettings(nSettings); layerSettings.mNumNeuronsPerLayerMin = 2; layerSettings.mNumNeuronsPerLayerMax = 2; NeuronNetSettings nnSettings = new NeuronNetSettings(layerSettings); nnSettings.mNumInputs = 1; nnSettings.mNumOutputs = 1; nnSettings.mNumLayersMin = 0; nnSettings.mNumLayersMax = 0; GeneticAlgorithmSettings gaSettings = new GeneticAlgorithmSettings(nnSettings.mFactory); gaSettings.mMaxPopulation = 100; GeneticAlgorithm ga = new GeneticAlgorithm(gaSettings); List<double> inputs = new List<double>() { 0 }; List<double> expected = new List<double>() { 0 }; int mNumEpochs = 100; Console.WriteLine("Learning..."); for (int iEpoch = 0; iEpoch < mNumEpochs; iEpoch++) { Console.Write(string.Format("Epoch: {0} / {1}\t", iEpoch + 1, mNumEpochs)); for (int x = 0; x <= 100; x++) { inputs.Clear(); expected.Clear(); inputs.Add((double)x / 100.0); expected.Add((double)x / 100.0); learnPopulation(ga, inputs, expected); } Console.Write(string.Format("Average: {0}\t", ga.AverageFitness)); Console.Write(string.Format("Best: {0}\t", ga.BestFitness)); Console.Write(string.Format("Worst: {0}\n", ga.WorstFitness)); ga.epoch(); } Console.WriteLine("Predicting..."); for (int x = 0; x <= 100; x++) { inputs[0] = (double)x / 100.0; var outputs = predict(ga, inputs); Console.WriteLine(string.Format("Input:\t{0}\t\tOutput:\t{1}", inputs[0], outputs[0])); } }
public NeuronNet(ObjectPool pool, NeuronNetSettings settings) : base(pool, settings) { mPool = new ObjectPool(settings.mLayerSettings.mFactory, settings.mNumLayersMax); mOutputLayer = new NeuronLayer(mPool, settings.mLayerSettings); }
public NeuronNetFactory(NeuronNetSettings nnSettings) : base(nnSettings) { }
public void test5Thread() { Console.WriteLine("Running test 5, min..."); DateTime timeStart = DateTime.Now; NeuronSettings nSettings = new NeuronSettings(); NeuronLayerSettings layerSettings = new NeuronLayerSettings(nSettings); layerSettings.mNumNeuronsPerLayerMin = 2; layerSettings.mNumNeuronsPerLayerMax = 2; NeuronNetSettings nnSettings = new NeuronNetSettings(layerSettings); nnSettings.mNumInputs = 2; nnSettings.mNumOutputs = 1; nnSettings.mNumLayersMin = 2; nnSettings.mNumLayersMax = 2; GeneticAlgorithmSettings gaSettings = new GeneticAlgorithmSettings(nnSettings.mFactory); gaSettings.mMaxPopulation = 100; GeneticAlgorithm ga = new GeneticAlgorithm(gaSettings); List<double> inputs = new List<double>() { 0, 0 }; List<double> expected = new List<double>() { 0 }; int iEpoch = 0; Console.WriteLine("Learning..."); while (!mLearningStopped && iEpoch < 100) { Console.Write(string.Format("Epoch: {0}\t", iEpoch++)); for (double x = 0; x <= 1; x += 0.01) { for (double y = 0; y <= 1; y += 0.01) { inputs[0] = x; inputs[1] = y; expected[0] = x*y; learnPopulation(ga, inputs, expected); } } Console.Write(string.Format("Average: {0:0.00}\t", ga.AverageFitness)); Console.Write(string.Format("Best: {0:0.00}\t", ga.BestFitness)); Console.Write(string.Format("Worst: {0:0.00}\n", ga.WorstFitness)); ga.epoch(); } DateTime timeEnd = DateTime.Now; TimeSpan ts = timeEnd - timeStart; Console.WriteLine("Learning took: " + ts.ToString()); Console.WriteLine("Predicting..."); for (double x = 0; x < 1; x += 0.1) { for (double y = 0; y < 1; y += 0.1) { inputs[0] = x; inputs[1] = y; var outputs = predict(ga, inputs); Console.WriteLine(string.Format("Input:\t{0}, {1}\t\tOutput:\t{2:0.000}", inputs[0], inputs[1], outputs[0])); } } }
public void test4() { Console.WriteLine("Running test 4, cos..."); NeuronSettings nSettings = new NeuronSettings(); NeuronLayerSettings layerSettings = new NeuronLayerSettings(nSettings); layerSettings.mNumNeuronsPerLayerMin = 1; layerSettings.mNumNeuronsPerLayerMax = 1; NeuronNetSettings nnSettings = new NeuronNetSettings(layerSettings); nnSettings.mNumInputs = 1; nnSettings.mNumOutputs = 1; nnSettings.mNumLayersMin = 0; nnSettings.mNumLayersMax = 0; GeneticAlgorithmSettings gaSettings = new GeneticAlgorithmSettings(nnSettings.mFactory); gaSettings.mMaxPopulation = 1000; GeneticAlgorithm ga = new GeneticAlgorithm(gaSettings); List<double> inputs = new List<double>() { 0 }; List<double> expected = new List<double>() { 0 }; int mNumEpochs = 100; Console.WriteLine("Learning..."); for (int iEpoch = 0; iEpoch < mNumEpochs; iEpoch++) { Console.Write(string.Format("Epoch: {0} / {1}\t", iEpoch + 1, mNumEpochs)); for (double x = -1.5; x <= 1.5; x += 0.001) { inputs[0] = x; expected[0] = Math.Sin(x); learnPopulation(ga, inputs, expected); } Console.Write(string.Format("Average: {0}\t", ga.AverageFitness)); Console.Write(string.Format("Best: {0}\t", ga.BestFitness)); Console.Write(string.Format("Worst: {0}\n", ga.WorstFitness)); ga.epoch(); } Console.Write(ga.SortedPopulation[0].ToString()); }