Sample() 공개 메소드

public Sample ( Agent agent, int horizon ) : double
agent Agent
horizon int
리턴 double
예제 #1
0
        override public int Search()
        {
            CtwContextTreeUndo undoInstance = new CtwContextTreeUndo(this);

            MonteCarloSearchNode searchTree = new MonteCarloSearchNode(MonteCarloSearchNode.DecisionNode);

            for (int i = 0; i < this.McSimulations; i++)
            {
                searchTree.Sample(this, this.Horizon);
                this.model_revert(undoInstance);
            }

            //searchTree.PrintBs();


            int    bestAction = -1;
            double bestMean   = double.NegativeInfinity;

            foreach (int action in this.Environment.ValidActions)
            {
                if (!searchTree.Children.ContainsKey(action))
                {
                    continue;
                }

                double mean = searchTree.Children[action].Mean + Utils.RandomDouble(0, 0.0001);
                if (mean > bestMean)
                {
                    bestMean   = mean;
                    bestAction = action;
                }
            }
            return(bestAction);
        }
예제 #2
0
        public double Sample(Agent agent, int horizon)
        {
            double reward = 0.0;

            if (horizon == 0)
            {
                return((int)reward);
            }
            else if (this.Type == ChanceNode)
            {
                var percept      = agent.GeneratePerceptAndUpdate();
                int observation  = percept.Item1;
                int randomReward = percept.Item2;

                if (!this.Children.ContainsKey(observation))  //new node ->add it as decision node
                {
                    this.Children[observation] = new MonteCarloSearchNode(DecisionNode);
                }
                MonteCarloSearchNode observationChild = this.Children[observation];

                reward = randomReward + observationChild.Sample(agent, horizon - 1);
            }
            else if (this.Visits == 0) //unvisited decision node or we have exceeded maximum tree depth
            {
                reward = agent.Playout(horizon);
//                Console.WriteLine("from playout: reward ="+reward);
            }
            else   //Previously visited decision node

            {
                int actionNullable = this.SelectAction(agent);
                int action         = actionNullable;

                agent.ModelUpdateAction(action);

                if (!this.Children.ContainsKey(action))     //this action is new chance child
                {
                    this.Children[action] = new MonteCarloSearchNode(ChanceNode);
                }
                MonteCarloSearchNode actionChild = this.Children[action];

                reward = actionChild.Sample(agent, horizon);   //it is not clear if not horizon-1. (asks pyaixi)
            }

            double visitsDouble = this.Visits;

            //Console.WriteLine("> {3} - {0}, {1}, {2}", this.mean, reward, (reward + (visitsDouble * this.mean) / (visitsDouble + 1.0)), visitsDouble);
            this.Mean   = (reward + (visitsDouble * this.Mean)) / (1.0 + visitsDouble);
            this.Visits = this.Visits + 1;

            return(reward);
        }
예제 #3
0
        public override int Search()
        {
            CtwContextTreeUndo undoInstance = new CtwContextTreeUndo(this);

            MonteCarloSearchNode searchTree = new MonteCarloSearchNode(MonteCarloSearchNode.DecisionNode);

            for (int i = 0; i < this.McSimulations; i++) {
                searchTree.Sample(this, this.Horizon);
                this.model_revert(undoInstance);
            }

            //searchTree.PrintBs();

            int bestAction=-1;
            double bestMean = double.NegativeInfinity;

            foreach (int action in this.Environment.ValidActions) {

                if (!searchTree.Children.ContainsKey(action)) {
                    continue;
                }

                double mean = searchTree.Children[action].Mean + Utils.RandomDouble(0, 0.0001);
                if (mean > bestMean) {
                    bestMean = mean;
                    bestAction = action;
                }
            }
            return bestAction;
        }