getColumnDimension() 공개 메소드

public getColumnDimension ( ) : int
리턴 int
예제 #1
0
	public Layer(Matrix weightMatrix, Vector biasVector, ActivationFunction af) {

		activationFunction = af;
		this.weightMatrix = weightMatrix;
		lastWeightUpdateMatrix = new Matrix(weightMatrix.getRowDimension(),
				weightMatrix.getColumnDimension());
		penultimateWeightUpdateMatrix = new Matrix(weightMatrix
				.getRowDimension(), weightMatrix.getColumnDimension());

		this.biasVector = biasVector;
		lastBiasUpdateVector = new Vector(biasVector.getRowDimension());
		penultimateBiasUpdateVector = new Vector(biasVector.getRowDimension());
	}
예제 #2
0
	public Layer(int numberOfNeurons, int numberOfInputs,
			double lowerLimitForWeights, double upperLimitForWeights,
			ActivationFunction af) {

		activationFunction = af;
		this.weightMatrix = new Matrix(numberOfNeurons, numberOfInputs);
		lastWeightUpdateMatrix = new Matrix(weightMatrix.getRowDimension(),
				weightMatrix.getColumnDimension());
		penultimateWeightUpdateMatrix = new Matrix(weightMatrix
				.getRowDimension(), weightMatrix.getColumnDimension());

		this.biasVector = new Vector(numberOfNeurons);
		lastBiasUpdateVector = new Vector(biasVector.getRowDimension());
		penultimateBiasUpdateVector = new Vector(biasVector.getRowDimension());

		initializeMatrix(weightMatrix, lowerLimitForWeights,
				upperLimitForWeights);
		initializeVector(biasVector, lowerLimitForWeights, upperLimitForWeights);
	}
예제 #3
0
        /**
         * Solve A*X = B
         *
         * @param B
         *            A Matrix with as many rows as A and any number of columns.
         * @return X so that L*U*X = B(piv,:)
         * @exception IllegalArgumentException
         *                Matrix row dimensions must agree.
         * @exception ApplicationException
         *                Matrix is singular.
         */
        public Matrix solve(Matrix B)
        {
            if (B.getRowDimension() != m)
            {
                throw new ArgumentException(
                          "Matrix row dimensions must agree.");
            }
            if (!this.isNonsingular())
            {
                throw new ApplicationException("Matrix is singular.");
            }

            // Copy right hand side with pivoting
            int    nx   = B.getColumnDimension();
            Matrix Xmat = B.getMatrix(piv, 0, nx - 1);

            double[][] X = Xmat.getArray();

            // Solve L*Y = B(piv,:)
            for (int k = 0; k < n; k++)
            {
                for (int i = k + 1; i < n; i++)
                {
                    for (int j = 0; j < nx; j++)
                    {
                        X[i][j] -= X[k][j] * LU[i][k];
                    }
                }
            }
            // Solve U*X = Y;
            for (int k = n - 1; k >= 0; k--)
            {
                for (int j = 0; j < nx; j++)
                {
                    X[k][j] /= LU[k][k];
                }
                for (int i = 0; i < k; i++)
                {
                    for (int j = 0; j < nx; j++)
                    {
                        X[i][j] -= X[k][j] * LU[i][k];
                    }
                }
            }
            return(Xmat);
        }
예제 #4
0
        /*
         * ------------------------ Constructor ------------------------
         */

        /**
         * LU Decomposition, a structure to access L, U and piv.
         * 
         * @param A
         *            Rectangular matrix
         */
        public LUDecomposition(Matrix A)
        {

            // Use a "left-looking", dot-product, Crout/Doolittle algorithm.

            LU = A.getArrayCopy();
            m = A.getRowDimension();
            n = A.getColumnDimension();
            piv = new int[m];
            for (int i = 0; i < m; i++)
            {
                piv[i] = i;
            }
            pivsign = 1;
            double[] LUrowi;
            double[] LUcolj = new double[m];

            // Outer loop.

            for (int j = 0; j < n; j++)
            {

                // Make a copy of the j-th column to localize references.

                for (int i = 0; i < m; i++)
                {
                    LUcolj[i] = LU[i][j];
                }

                // Apply previous transformations.

                for (int i = 0; i < m; i++)
                {
                    LUrowi = LU[i];

                    // Most of the time is spent in the following dot product.

                    int kmax = Math.Min(i, j);
                    double s = 0.0;
                    for (int k = 0; k < kmax; k++)
                    {
                        s += LUrowi[k] * LUcolj[k];
                    }

                    LUrowi[j] = LUcolj[i] -= s;
                }

                // Find pivot and exchange if necessary.

                int p = j;
                for (int i = j + 1; i < m; i++)
                {
                    if (Math.Abs(LUcolj[i]) > Math.Abs(LUcolj[p]))
                    {
                        p = i;
                    }
                }
                if (p != j)
                {
                    for (int k = 0; k < n; k++)
                    {
                        double t = LU[p][k];
                        LU[p][k] = LU[j][k];
                        LU[j][k] = t;
                    }
                    int k2 = piv[p];
                    piv[p] = piv[j];
                    piv[j] = k2;
                    pivsign = -pivsign;
                }

                // Compute multipliers.

                if (j < m & LU[j][j] != 0.0)
                {
                    for (int i = j + 1; i < m; i++)
                    {
                        LU[i][j] /= LU[j][j];
                    }
                }
            }
        }
예제 #5
0
        /**
         * Solve A*X = B
         * 
         * @param B
         *            A Matrix with as many rows as A and any number of columns.
         * @return X so that L*U*X = B(piv,:)
         * @exception IllegalArgumentException
         *                Matrix row dimensions must agree.
         * @exception ApplicationException
         *                Matrix is singular.
         */
        public Matrix solve(Matrix B)
        {
            if (B.getRowDimension() != m)
            {
                throw new ArgumentException(
                        "Matrix row dimensions must agree.");
            }
            if (!this.isNonsingular())
            {
                throw new ApplicationException("Matrix is singular.");
            }

            // Copy right hand side with pivoting
            int nx = B.getColumnDimension();
            Matrix Xmat = B.getMatrix(piv, 0, nx - 1);
            double[][] X = Xmat.getArray();

            // Solve L*Y = B(piv,:)
            for (int k = 0; k < n; k++)
            {
                for (int i = k + 1; i < n; i++)
                {
                    for (int j = 0; j < nx; j++)
                    {
                        X[i][j] -= X[k][j] * LU[i][k];
                    }
                }
            }
            // Solve U*X = Y;
            for (int k = n - 1; k >= 0; k--)
            {
                for (int j = 0; j < nx; j++)
                {
                    X[k][j] /= LU[k][k];
                }
                for (int i = 0; i < k; i++)
                {
                    for (int j = 0; j < nx; j++)
                    {
                        X[i][j] -= X[k][j] * LU[i][k];
                    }
                }
            }
            return Xmat;
        }
예제 #6
0
        /*
         * ------------------------ Constructor ------------------------
         */

        /**
         * LU Decomposition, a structure to access L, U and piv.
         *
         * @param A
         *            Rectangular matrix
         */
        public LUDecomposition(Matrix A)
        {
            // Use a "left-looking", dot-product, Crout/Doolittle algorithm.

            LU  = A.getArrayCopy();
            m   = A.getRowDimension();
            n   = A.getColumnDimension();
            piv = new int[m];
            for (int i = 0; i < m; i++)
            {
                piv[i] = i;
            }
            pivsign = 1;
            double[] LUrowi;
            double[] LUcolj = new double[m];

            // Outer loop.

            for (int j = 0; j < n; j++)
            {
                // Make a copy of the j-th column to localize references.

                for (int i = 0; i < m; i++)
                {
                    LUcolj[i] = LU[i][j];
                }

                // Apply previous transformations.

                for (int i = 0; i < m; i++)
                {
                    LUrowi = LU[i];

                    // Most of the time is spent in the following dot product.

                    int    kmax = Math.Min(i, j);
                    double s    = 0.0;
                    for (int k = 0; k < kmax; k++)
                    {
                        s += LUrowi[k] * LUcolj[k];
                    }

                    LUrowi[j] = LUcolj[i] -= s;
                }

                // Find pivot and exchange if necessary.

                int p = j;
                for (int i = j + 1; i < m; i++)
                {
                    if (Math.Abs(LUcolj[i]) > Math.Abs(LUcolj[p]))
                    {
                        p = i;
                    }
                }
                if (p != j)
                {
                    for (int k = 0; k < n; k++)
                    {
                        double t = LU[p][k];
                        LU[p][k] = LU[j][k];
                        LU[j][k] = t;
                    }
                    int k2 = piv[p];
                    piv[p]  = piv[j];
                    piv[j]  = k2;
                    pivsign = -pivsign;
                }

                // Compute multipliers.

                if (j < m & LU[j][j] != 0.0)
                {
                    for (int i = j + 1; i < m; i++)
                    {
                        LU[i][j] /= LU[j][j];
                    }
                }
            }
        }
예제 #7
0
	//
	// PRIVATE METHODS
	//
	private static void initializeMatrix(Matrix aMatrix, double lowerLimit,
			double upperLimit) {
		for (int i = 0; i < aMatrix.getRowDimension(); i++) {
			for (int j = 0; j < aMatrix.getColumnDimension(); j++) {
				double random = Util.generateRandomDoubleBetween(lowerLimit,
						upperLimit);
				aMatrix.set(i, j, random);
			}
		}

	}