public static AASSaturnRingDetails Calculate(double JD) { //What will be the return value AASSaturnRingDetails details = new AASSaturnRingDetails(); double T = (JD - 2451545) / 36525; double T2 = T * T; //Step 1. Calculate the inclination of the plane of the ring and the longitude of the ascending node referred to the ecliptic and mean equinox of the date double i = 28.075216 - 0.012998 * T + 0.000004 * T2; double irad = AASCoordinateTransformation.DegreesToRadians(i); double omega = 169.508470 + 1.394681 * T + 0.000412 * T2; double omegarad = AASCoordinateTransformation.DegreesToRadians(omega); //Step 2. Calculate the heliocentric longitude, latitude and radius vector of the Earth in the FK5 system double l0 = AASEarth.EclipticLongitude(JD); double b0 = AASEarth.EclipticLatitude(JD); l0 += AASFK5.CorrectionInLongitude(l0, b0, JD); double l0rad = AASCoordinateTransformation.DegreesToRadians(l0); b0 += AASFK5.CorrectionInLatitude(l0, JD); double b0rad = AASCoordinateTransformation.DegreesToRadians(b0); double R = AASEarth.RadiusVector(JD); //Step 3. Calculate the corresponding coordinates l,b,r for Saturn but for the instance t-lightraveltime double DELTA = 9; double PreviousEarthLightTravelTime = 0; double EarthLightTravelTime = AASElliptical.DistanceToLightTime(DELTA); double JD1 = JD - EarthLightTravelTime; bool bIterate = true; double x = 0; double y = 0; double z = 0; double l = 0; double b = 0; double r = 0; while (bIterate) { //Calculate the position of Saturn l = AASSaturn.EclipticLongitude(JD1); b = AASSaturn.EclipticLatitude(JD1); l += AASFK5.CorrectionInLongitude(l, b, JD1); b += AASFK5.CorrectionInLatitude(l, JD1); double lrad = AASCoordinateTransformation.DegreesToRadians(l); double brad = AASCoordinateTransformation.DegreesToRadians(b); r = AASSaturn.RadiusVector(JD1); //Step 4 x = r * Math.Cos(brad) * Math.Cos(lrad) - R * Math.Cos(l0rad); y = r * Math.Cos(brad) * Math.Sin(lrad) - R * Math.Sin(l0rad); z = r * Math.Sin(brad) - R * Math.Sin(b0rad); DELTA = Math.Sqrt(x * x + y * y + z * z); EarthLightTravelTime = AASElliptical.DistanceToLightTime(DELTA); //Prepare for the next loop around bIterate = (Math.Abs(EarthLightTravelTime - PreviousEarthLightTravelTime) > 2E-6); //2E-6 corresponds to 0.17 of a second if (bIterate) { JD1 = JD - EarthLightTravelTime; PreviousEarthLightTravelTime = EarthLightTravelTime; } } //Step 5. Calculate Saturn's geocentric Longitude and Latitude double lambda = Math.Atan2(y, x); double beta = Math.Atan2(z, Math.Sqrt(x * x + y * y)); //Step 6. Calculate B, a and b details.B = Math.Asin(Math.Sin(irad) * Math.Cos(beta) * Math.Sin(lambda - omegarad) - Math.Cos(irad) * Math.Sin(beta)); details.a = 375.35 / DELTA; details.b = details.a * Math.Sin(Math.Abs(details.B)); details.B = AASCoordinateTransformation.RadiansToDegrees(details.B); //Step 7. Calculate the longitude of the ascending node of Saturn's orbit double N = 113.6655 + 0.8771 * T; double Nrad = AASCoordinateTransformation.DegreesToRadians(N); double ldash = l - 0.01759 / r; double ldashrad = AASCoordinateTransformation.DegreesToRadians(ldash); double bdash = b - 0.000764 * Math.Cos(ldashrad - Nrad) / r; double bdashrad = AASCoordinateTransformation.DegreesToRadians(bdash); //Step 8. Calculate Bdash details.Bdash = AASCoordinateTransformation.RadiansToDegrees(Math.Asin(Math.Sin(irad) * Math.Cos(bdashrad) * Math.Sin(ldashrad - omegarad) - Math.Cos(irad) * Math.Sin(bdashrad))); //Step 9. Calculate DeltaU double U1 = Math.Atan2(Math.Sin(irad) * Math.Sin(bdashrad) + Math.Cos(irad) * Math.Cos(bdashrad) * Math.Sin(ldashrad - omegarad), Math.Cos(bdashrad) * Math.Cos(ldashrad - omegarad)); double U2 = Math.Atan2(Math.Sin(irad) * Math.Sin(beta) + Math.Cos(irad) * Math.Cos(beta) * Math.Sin(lambda - omegarad), Math.Cos(beta) * Math.Cos(lambda - omegarad)); details.DeltaU = AASCoordinateTransformation.RadiansToDegrees(Math.Abs(U1 - U2)); //Step 10. Calculate the Nutations double Obliquity = AASNutation.TrueObliquityOfEcliptic(JD); double NutationInLongitude = AASNutation.NutationInLongitude(JD); //Step 11. Calculate the Ecliptical longitude and latitude of the northern pole of the ring plane double lambda0 = omega - 90; double beta0 = 90 - i; //Step 12. Correct lambda and beta for the aberration of Saturn lambda += AASCoordinateTransformation.DegreesToRadians(0.005693 * Math.Cos(l0rad - lambda) / Math.Cos(beta)); beta += AASCoordinateTransformation.DegreesToRadians(0.005693 * Math.Sin(l0rad - lambda) * Math.Sin(beta)); //Step 13. Add nutation in longitude to lambda0 and lambda //double NLrad = AASCoordinateTransformation.DegreesToRadians(NutationInLongitude/3600); lambda = AASCoordinateTransformation.RadiansToDegrees(lambda); lambda += NutationInLongitude / 3600; lambda = AASCoordinateTransformation.MapTo0To360Range(lambda); lambda0 += NutationInLongitude / 3600; lambda0 = AASCoordinateTransformation.MapTo0To360Range(lambda0); //Step 14. Convert to equatorial coordinates beta = AASCoordinateTransformation.RadiansToDegrees(beta); AAS2DCoordinate GeocentricEclipticSaturn = AASCoordinateTransformation.Ecliptic2Equatorial(lambda, beta, Obliquity); double alpha = AASCoordinateTransformation.HoursToRadians(GeocentricEclipticSaturn.X); double delta = AASCoordinateTransformation.DegreesToRadians(GeocentricEclipticSaturn.Y); AAS2DCoordinate GeocentricEclipticNorthPole = AASCoordinateTransformation.Ecliptic2Equatorial(lambda0, beta0, Obliquity); double alpha0 = AASCoordinateTransformation.HoursToRadians(GeocentricEclipticNorthPole.X); double delta0 = AASCoordinateTransformation.DegreesToRadians(GeocentricEclipticNorthPole.Y); //Step 15. Calculate the Position angle details.P = AASCoordinateTransformation.RadiansToDegrees(Math.Atan2(Math.Cos(delta0) * Math.Sin(alpha0 - alpha), Math.Sin(delta0) * Math.Cos(delta) - Math.Cos(delta0) * Math.Sin(delta) * Math.Cos(alpha0 - alpha))); return details; }
public static AASSaturnRingDetails Calculate(double JD, bool bHighPrecision) { //What will be the return value AASSaturnRingDetails details = new AASSaturnRingDetails(); double T = (JD - 2451545) / 36525; double T2 = T * T; //Step 1. Calculate the inclination of the plane of the ring and the longitude of the ascending node referred to the ecliptic and mean equinox of the date double i = 28.075216 - 0.012998 * T + 0.000004 * T2; double irad = AASCoordinateTransformation.DegreesToRadians(i); double omega = 169.508470 + 1.394681 * T + 0.000412 * T2; double omegarad = AASCoordinateTransformation.DegreesToRadians(omega); //Step 2. Calculate the heliocentric longitude, latitude and radius vector of the Earth in the FK5 system double l0 = AASEarth.EclipticLongitude(JD, bHighPrecision); double b0 = AASEarth.EclipticLatitude(JD, bHighPrecision); l0 += AASFK5.CorrectionInLongitude(l0, b0, JD); double l0rad = AASCoordinateTransformation.DegreesToRadians(l0); b0 += AASFK5.CorrectionInLatitude(l0, JD); double b0rad = AASCoordinateTransformation.DegreesToRadians(b0); double R = AASEarth.RadiusVector(JD, bHighPrecision); //Step 3. Calculate the corresponding coordinates l,b,r for Saturn but for the instance t-lightraveltime double DELTA = 9; double PreviousEarthLightTravelTime = 0; double EarthLightTravelTime = AASElliptical.DistanceToLightTime(DELTA); double JD1 = JD - EarthLightTravelTime; bool bIterate = true; double x = 0; double y = 0; double z = 0; double l = 0; double b = 0; double r = 0; while (bIterate) { //Calculate the position of Saturn l = AASSaturn.EclipticLongitude(JD1, bHighPrecision); b = AASSaturn.EclipticLatitude(JD1, bHighPrecision); l += AASFK5.CorrectionInLongitude(l, b, JD1); b += AASFK5.CorrectionInLatitude(l, JD1); double lrad = AASCoordinateTransformation.DegreesToRadians(l); double brad = AASCoordinateTransformation.DegreesToRadians(b); r = AASSaturn.RadiusVector(JD1, bHighPrecision); //Step 4 x = r * Math.Cos(brad) * Math.Cos(lrad) - R * Math.Cos(l0rad); y = r * Math.Cos(brad) * Math.Sin(lrad) - R * Math.Sin(l0rad); z = r * Math.Sin(brad) - R * Math.Sin(b0rad); DELTA = Math.Sqrt(x * x + y * y + z * z); EarthLightTravelTime = AASElliptical.DistanceToLightTime(DELTA); //Prepare for the next loop around bIterate = (Math.Abs(EarthLightTravelTime - PreviousEarthLightTravelTime) > 2e-6); //2e-6 corresponds to 0.17 of a second if (bIterate) { JD1 = JD - EarthLightTravelTime; PreviousEarthLightTravelTime = EarthLightTravelTime; } } //Step 5. Calculate Saturn's geocentric Longitude and Latitude double lambda = Math.Atan2(y, x); double beta = Math.Atan2(z, Math.Sqrt(x * x + y * y)); //Step 6. Calculate B, a and b details.B = Math.Asin(Math.Sin(irad) * Math.Cos(beta) * Math.Sin(lambda - omegarad) - Math.Cos(irad) * Math.Sin(beta)); details.a = 375.35 / DELTA; details.b = details.a * Math.Sin(Math.Abs(details.B)); details.B = AASCoordinateTransformation.RadiansToDegrees(details.B); //Step 7. Calculate the longitude of the ascending node of Saturn's orbit double N = 113.6655 + 0.8771 * T; double Nrad = AASCoordinateTransformation.DegreesToRadians(N); double ldash = l - 0.01759 / r; double ldashrad = AASCoordinateTransformation.DegreesToRadians(ldash); double bdash = b - 0.000764 * Math.Cos(ldashrad - Nrad) / r; double bdashrad = AASCoordinateTransformation.DegreesToRadians(bdash); //Step 8. Calculate Bdash details.Bdash = AASCoordinateTransformation.RadiansToDegrees(Math.Asin(Math.Sin(irad) * Math.Cos(bdashrad) * Math.Sin(ldashrad - omegarad) - Math.Cos(irad) * Math.Sin(bdashrad))); //Step 9. Calculate DeltaU details.U1 = AASCoordinateTransformation.MapTo0To360Range(AASCoordinateTransformation.RadiansToDegrees(Math.Atan2(Math.Sin(irad) * Math.Sin(bdashrad) + Math.Cos(irad) * Math.Cos(bdashrad) * Math.Sin(ldashrad - omegarad), Math.Cos(bdashrad) * Math.Cos(ldashrad - omegarad)))); details.U2 = AASCoordinateTransformation.MapTo0To360Range(AASCoordinateTransformation.RadiansToDegrees(Math.Atan2(Math.Sin(irad) * Math.Sin(beta) + Math.Cos(irad) * Math.Cos(beta) * Math.Sin(lambda - omegarad), Math.Cos(beta) * Math.Cos(lambda - omegarad)))); details.DeltaU = Math.Abs(details.U1 - details.U2); if (details.DeltaU > 180) { details.DeltaU = 360 - details.DeltaU; } //Step 10. Calculate the Nutations double Obliquity = AASNutation.TrueObliquityOfEcliptic(JD); double NutationInLongitude = AASNutation.NutationInLongitude(JD); //Step 11. Calculate the Ecliptical longitude and latitude of the northern pole of the ring plane double lambda0 = omega - 90; double beta0 = 90 - i; //Step 12. Correct lambda and beta for the aberration of Saturn lambda += AASCoordinateTransformation.DegreesToRadians(0.005693 * Math.Cos(l0rad - lambda) / Math.Cos(beta)); beta += AASCoordinateTransformation.DegreesToRadians(0.005693 * Math.Sin(l0rad - lambda) * Math.Sin(beta)); //Step 13. Add nutation in longitude to lambda0 and lambda lambda = AASCoordinateTransformation.RadiansToDegrees(lambda); lambda += NutationInLongitude / 3600; lambda = AASCoordinateTransformation.MapTo0To360Range(lambda); lambda0 += NutationInLongitude / 3600; lambda0 = AASCoordinateTransformation.MapTo0To360Range(lambda0); //Step 14. Convert to equatorial coordinates beta = AASCoordinateTransformation.RadiansToDegrees(beta); AAS2DCoordinate GeocentricEclipticSaturn = AASCoordinateTransformation.Ecliptic2Equatorial(lambda, beta, Obliquity); double alpha = AASCoordinateTransformation.HoursToRadians(GeocentricEclipticSaturn.X); double delta = AASCoordinateTransformation.DegreesToRadians(GeocentricEclipticSaturn.Y); AAS2DCoordinate GeocentricEclipticNorthPole = AASCoordinateTransformation.Ecliptic2Equatorial(lambda0, beta0, Obliquity); double alpha0 = AASCoordinateTransformation.HoursToRadians(GeocentricEclipticNorthPole.X); double delta0 = AASCoordinateTransformation.DegreesToRadians(GeocentricEclipticNorthPole.Y); //Step 15. Calculate the Position angle details.P = AASCoordinateTransformation.RadiansToDegrees(Math.Atan2(Math.Cos(delta0) * Math.Sin(alpha0 - alpha), Math.Sin(delta0) * Math.Cos(delta) - Math.Cos(delta0) * Math.Sin(delta) * Math.Cos(alpha0 - alpha))); return(details); }