protected void Button2_Click(object sender, EventArgs e) { weka.core.Instances data = new weka.core.Instances(new java.io.FileReader("d:\\train.arff")); data.setClassIndex(data.numAttributes() - 1); weka.classifiers.Classifier cls = new weka.classifiers.bayes.NaiveBayes(); // weka.classifiers.functions.supportVector.SMOset(); int runs = 1; int folds = 10; //string sq = "delete from nbresults"; //dbc.execfn(sq); // perform cross-validation for (int i = 0; i < runs; i++) { // randomize data int seed = i + 1; java.util.Random rand = new java.util.Random(seed); weka.core.Instances randData = new weka.core.Instances(data); randData.randomize(rand); if (randData.classAttribute().isNominal()) { randData.stratify(folds); } // weka.classifiers.trees.j48 jj; weka.classifiers.Evaluation eval = new weka.classifiers.Evaluation(randData); for (int n = 0; n < folds; n++) { weka.core.Instances train = randData.trainCV(folds, n); weka.core.Instances test = randData.testCV(folds, n); // build and evaluate classifier weka.classifiers.Classifier clsCopy = weka.classifiers.Classifier.makeCopy(cls); clsCopy.buildClassifier(train); eval.evaluateModel(clsCopy, test); } preci_value.Text = eval.precision(0).ToString(); recall_value.Text = eval.recall(0).ToString(); acc_value.Text = eval.fMeasure(0).ToString(); string s = "NB"; // string str = "insert into evaluation values('" + instid.Text + "','" + courid.Text.ToString() + "','" + preci_value.Text.ToString() + "','" + recall_value.Text.ToString() + "','" + acc_value.Text.ToString() + "','" + s + "' )"; // db.execfn(str); // MessageBox.Show("saved"); } }