예제 #1
0
        /*************************************************************************
        Constained linear least squares fitting.

        This  is  variation  of LSFitLinear(),  which searchs for min|A*x=b| given
        that  K  additional  constaints  C*x=bc are satisfied. It reduces original
        task to modified one: min|B*y-d| WITHOUT constraints,  then  LSFitLinear()
        is called.

        IMPORTANT: if you want to perform  polynomial  fitting,  it  may  be  more
                   convenient to use PolynomialFit() function. This function gives
                   best  results  on  polynomial  problems  and  solves  numerical
                   stability  issues  which  arise  when   you   fit   high-degree
                   polynomials to your data.

        INPUT PARAMETERS:
            Y       -   array[0..N-1] Function values in  N  points.
            FMatrix -   a table of basis functions values, array[0..N-1, 0..M-1].
                        FMatrix[I,J] - value of J-th basis function in I-th point.
            CMatrix -   a table of constaints, array[0..K-1,0..M].
                        I-th row of CMatrix corresponds to I-th linear constraint:
                        CMatrix[I,0]*C[0] + ... + CMatrix[I,M-1]*C[M-1] = CMatrix[I,M]
            N       -   number of points used. N>=1.
            M       -   number of basis functions, M>=1.
            K       -   number of constraints, 0 <= K < M
                        K=0 corresponds to absence of constraints.

        OUTPUT PARAMETERS:
            Info    -   error code:
                        * -4    internal SVD decomposition subroutine failed (very
                                rare and for degenerate systems only)
                        * -3    either   too   many  constraints  (M   or   more),
                                degenerate  constraints   (some   constraints  are
                                repetead twice) or inconsistent  constraints  were
                                specified.
                        *  1    task is solved
            C       -   decomposition coefficients, array[0..M-1]
            Rep     -   fitting report. Following fields are set:
                        * R2                non-adjusted coefficient of determination
                                            (non-weighted)
                        * RMSError          rms error on the (X,Y).
                        * AvgError          average error on the (X,Y).
                        * AvgRelError       average relative error on the non-zero Y
                        * MaxError          maximum error
                                            NON-WEIGHTED ERRORS ARE CALCULATED

        IMPORTANT:
            this subroitine doesn't calculate task's condition number for K<>0.
                        
        ERRORS IN PARAMETERS                
                        
        This  solver  also  calculates different kinds of errors in parameters and
        fills corresponding fields of report:
        * Rep.CovPar        covariance matrix for parameters, array[K,K].
        * Rep.ErrPar        errors in parameters, array[K],
                            errpar = sqrt(diag(CovPar))
        * Rep.ErrCurve      vector of fit errors - standard deviations of empirical
                            best-fit curve from "ideal" best-fit curve built  with
                            infinite number of samples, array[N].
                            errcurve = sqrt(diag(F*CovPar*F')),
                            where F is functions matrix.
        * Rep.Noise         vector of per-point estimates of noise, array[N]

        IMPORTANT:  errors  in  parameters  are  calculated  without  taking  into
                    account boundary/linear constraints! Presence  of  constraints
                    changes distribution of errors, but there is no  easy  way  to
                    account for constraints when you calculate covariance matrix.
                    
        NOTE:       noise in the data is estimated as follows:
                    * for fitting without user-supplied  weights  all  points  are
                      assumed to have same level of noise, which is estimated from
                      the data
                    * for fitting with user-supplied weights we assume that  noise
                      level in I-th point is inversely proportional to Ith weight.
                      Coefficient of proportionality is estimated from the data.
                    
        NOTE:       we apply small amount of regularization when we invert squared
                    Jacobian and calculate covariance matrix. It  guarantees  that
                    algorithm won't divide by zero  during  inversion,  but  skews
                    error estimates a bit (fractional error is about 10^-9).
                    
                    However, we believe that this difference is insignificant  for
                    all practical purposes except for the situation when you  want
                    to compare ALGLIB results with "reference"  implementation  up
                    to the last significant digit.
                    
        NOTE:       covariance matrix is estimated using  correction  for  degrees
                    of freedom (covariances are divided by N-M instead of dividing
                    by N).

          -- ALGLIB --
             Copyright 07.09.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void lsfitlinearc(double[] y,
            double[,] fmatrix,
            double[,] cmatrix,
            int n,
            int m,
            int k,
            ref int info,
            ref double[] c,
            lsfitreport rep)
        {
            double[] w = new double[0];
            int i = 0;

            y = (double[])y.Clone();
            info = 0;
            c = new double[0];

            alglib.ap.assert(n>=1, "LSFitLinearC: N<1!");
            alglib.ap.assert(m>=1, "LSFitLinearC: M<1!");
            alglib.ap.assert(k>=0, "LSFitLinearC: K<0!");
            alglib.ap.assert(alglib.ap.len(y)>=n, "LSFitLinearC: length(Y)<N!");
            alglib.ap.assert(apserv.isfinitevector(y, n), "LSFitLinearC: Y contains infinite or NaN values!");
            alglib.ap.assert(alglib.ap.rows(fmatrix)>=n, "LSFitLinearC: rows(FMatrix)<N!");
            alglib.ap.assert(alglib.ap.cols(fmatrix)>=m, "LSFitLinearC: cols(FMatrix)<M!");
            alglib.ap.assert(apserv.apservisfinitematrix(fmatrix, n, m), "LSFitLinearC: FMatrix contains infinite or NaN values!");
            alglib.ap.assert(alglib.ap.rows(cmatrix)>=k, "LSFitLinearC: rows(CMatrix)<K!");
            alglib.ap.assert(alglib.ap.cols(cmatrix)>=m+1 || k==0, "LSFitLinearC: cols(CMatrix)<M+1!");
            alglib.ap.assert(apserv.apservisfinitematrix(cmatrix, k, m+1), "LSFitLinearC: CMatrix contains infinite or NaN values!");
            w = new double[n];
            for(i=0; i<=n-1; i++)
            {
                w[i] = 1;
            }
            lsfitlinearwc(y, w, fmatrix, cmatrix, n, m, k, ref info, ref c, rep);
        }
예제 #2
0
        /*************************************************************************
        Linear least squares fitting, without weights.

        See LSFitLinearW for more information.

          -- ALGLIB --
             Copyright 17.08.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void lsfitlinear(ref double[] y,
            ref double[,] fmatrix,
            int n,
            int m,
            ref int info,
            ref double[] c,
            ref lsfitreport rep)
        {
            double[] w = new double[0];
            int i = 0;

            if( n<1 )
            {
                info = -1;
                return;
            }
            w = new double[n];
            for(i=0; i<=n-1; i++)
            {
                w[i] = 1;
            }
            lsfitlinearinternal(ref y, ref w, ref fmatrix, n, m, ref info, ref c, ref rep);
        }
예제 #3
0
파일: interpolation.cs 프로젝트: Ring-r/opt
    public static void lsfitlinearc(double[] y, double[,] fmatrix, double[,] cmatrix, out int info, out double[] c, out lsfitreport rep)
    {
        int n;
        int m;
        int k;
        if( (ap.len(y)!=ap.rows(fmatrix)))
            throw new alglibexception("Error while calling 'lsfitlinearc': looks like one of arguments has wrong size");
        if( (ap.cols(fmatrix)!=ap.cols(cmatrix)-1))
            throw new alglibexception("Error while calling 'lsfitlinearc': looks like one of arguments has wrong size");
        info = 0;
        c = new double[0];
        rep = new lsfitreport();
        n = ap.len(y);
        m = ap.cols(fmatrix);
        k = ap.rows(cmatrix);
        lsfit.lsfitlinearc(y, fmatrix, cmatrix, n, m, k, ref info, ref c, rep.innerobj);

        return;
    }
예제 #4
0
        /*************************************************************************
        Nonlinear least squares fitting results.

        Called after LSFitNonlinearIteration() returned False.

        INPUT PARAMETERS:
            State   -   algorithm state (used by LSFitNonlinearIteration).

        OUTPUT PARAMETERS:
            Info    -   completetion code:
                            * -1    incorrect parameters were specified
                            *  1    relative function improvement is no more than
                                    EpsF.
                            *  2    relative step is no more than EpsX.
                            *  4    gradient norm is no more than EpsG
                            *  5    MaxIts steps was taken
            C       -   array[0..K-1], solution
            Rep     -   optimization report. Following fields are set:
                        * Rep.TerminationType completetion code:
                        * RMSError          rms error on the (X,Y).
                        * AvgError          average error on the (X,Y).
                        * AvgRelError       average relative error on the non-zero Y
                        * MaxError          maximum error
                                            NON-WEIGHTED ERRORS ARE CALCULATED


          -- ALGLIB --
             Copyright 17.08.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void lsfitnonlinearresults(ref lsfitstate state,
            ref int info,
            ref double[] c,
            ref lsfitreport rep)
        {
            int i_ = 0;

            info = state.repterminationtype;
            if( info>0 )
            {
                c = new double[state.k];
                for(i_=0; i_<=state.k-1;i_++)
                {
                    c[i_] = state.c[i_];
                }
                rep.rmserror = state.reprmserror;
                rep.avgerror = state.repavgerror;
                rep.avgrelerror = state.repavgrelerror;
                rep.maxerror = state.repmaxerror;
            }
        }
예제 #5
0
        /*************************************************************************
        Internal fitting subroutine
        *************************************************************************/
        private static void lsfitlinearinternal(ref double[] y,
            ref double[] w,
            ref double[,] fmatrix,
            int n,
            int m,
            ref int info,
            ref double[] c,
            ref lsfitreport rep)
        {
            double threshold = 0;
            double[,] ft = new double[0,0];
            double[,] q = new double[0,0];
            double[,] l = new double[0,0];
            double[,] r = new double[0,0];
            double[] b = new double[0];
            double[] wmod = new double[0];
            double[] tau = new double[0];
            int i = 0;
            int j = 0;
            double v = 0;
            double[] sv = new double[0];
            double[,] u = new double[0,0];
            double[,] vt = new double[0,0];
            double[] tmp = new double[0];
            double[] utb = new double[0];
            double[] sutb = new double[0];
            int relcnt = 0;
            int i_ = 0;

            if( n<1 | m<1 )
            {
                info = -1;
                return;
            }
            info = 1;
            threshold = Math.Sqrt(AP.Math.MachineEpsilon);
            
            //
            // Degenerate case, needs special handling
            //
            if( n<m )
            {
                
                //
                // Create design matrix.
                //
                ft = new double[n, m];
                b = new double[n];
                wmod = new double[n];
                for(j=0; j<=n-1; j++)
                {
                    v = w[j];
                    for(i_=0; i_<=m-1;i_++)
                    {
                        ft[j,i_] = v*fmatrix[j,i_];
                    }
                    b[j] = w[j]*y[j];
                    wmod[j] = 1;
                }
                
                //
                // LQ decomposition and reduction to M=N
                //
                c = new double[m];
                for(i=0; i<=m-1; i++)
                {
                    c[i] = 0;
                }
                rep.taskrcond = 0;
                ortfac.rmatrixlq(ref ft, n, m, ref tau);
                ortfac.rmatrixlqunpackq(ref ft, n, m, ref tau, n, ref q);
                ortfac.rmatrixlqunpackl(ref ft, n, m, ref l);
                lsfitlinearinternal(ref b, ref wmod, ref l, n, n, ref info, ref tmp, ref rep);
                if( info<=0 )
                {
                    return;
                }
                for(i=0; i<=n-1; i++)
                {
                    v = tmp[i];
                    for(i_=0; i_<=m-1;i_++)
                    {
                        c[i_] = c[i_] + v*q[i,i_];
                    }
                }
                return;
            }
            
            //
            // N>=M. Generate design matrix and reduce to N=M using
            // QR decomposition.
            //
            ft = new double[n, m];
            b = new double[n];
            for(j=0; j<=n-1; j++)
            {
                v = w[j];
                for(i_=0; i_<=m-1;i_++)
                {
                    ft[j,i_] = v*fmatrix[j,i_];
                }
                b[j] = w[j]*y[j];
            }
            ortfac.rmatrixqr(ref ft, n, m, ref tau);
            ortfac.rmatrixqrunpackq(ref ft, n, m, ref tau, m, ref q);
            ortfac.rmatrixqrunpackr(ref ft, n, m, ref r);
            tmp = new double[m];
            for(i=0; i<=m-1; i++)
            {
                tmp[i] = 0;
            }
            for(i=0; i<=n-1; i++)
            {
                v = b[i];
                for(i_=0; i_<=m-1;i_++)
                {
                    tmp[i_] = tmp[i_] + v*q[i,i_];
                }
            }
            b = new double[m];
            for(i_=0; i_<=m-1;i_++)
            {
                b[i_] = tmp[i_];
            }
            
            //
            // R contains reduced MxM design upper triangular matrix,
            // B contains reduced Mx1 right part.
            //
            // Determine system condition number and decide
            // should we use triangular solver (faster) or
            // SVD-based solver (more stable).
            //
            // We can use LU-based RCond estimator for this task.
            //
            rep.taskrcond = rcond.rmatrixlurcondinf(ref r, m);
            if( (double)(rep.taskrcond)>(double)(threshold) )
            {
                
                //
                // use QR-based solver
                //
                c = new double[m];
                c[m-1] = b[m-1]/r[m-1,m-1];
                for(i=m-2; i>=0; i--)
                {
                    v = 0.0;
                    for(i_=i+1; i_<=m-1;i_++)
                    {
                        v += r[i,i_]*c[i_];
                    }
                    c[i] = (b[i]-v)/r[i,i];
                }
            }
            else
            {
                
                //
                // use SVD-based solver
                //
                if( !svd.rmatrixsvd(r, m, m, 1, 1, 2, ref sv, ref u, ref vt) )
                {
                    info = -4;
                    return;
                }
                utb = new double[m];
                sutb = new double[m];
                for(i=0; i<=m-1; i++)
                {
                    utb[i] = 0;
                }
                for(i=0; i<=m-1; i++)
                {
                    v = b[i];
                    for(i_=0; i_<=m-1;i_++)
                    {
                        utb[i_] = utb[i_] + v*u[i,i_];
                    }
                }
                if( (double)(sv[0])>(double)(0) )
                {
                    rep.taskrcond = sv[m-1]/sv[0];
                    for(i=0; i<=m-1; i++)
                    {
                        if( (double)(sv[i])>(double)(threshold*sv[0]) )
                        {
                            sutb[i] = utb[i]/sv[i];
                        }
                        else
                        {
                            sutb[i] = 0;
                        }
                    }
                }
                else
                {
                    rep.taskrcond = 0;
                    for(i=0; i<=m-1; i++)
                    {
                        sutb[i] = 0;
                    }
                }
                c = new double[m];
                for(i=0; i<=m-1; i++)
                {
                    c[i] = 0;
                }
                for(i=0; i<=m-1; i++)
                {
                    v = sutb[i];
                    for(i_=0; i_<=m-1;i_++)
                    {
                        c[i_] = c[i_] + v*vt[i,i_];
                    }
                }
            }
            
            //
            // calculate errors
            //
            rep.rmserror = 0;
            rep.avgerror = 0;
            rep.avgrelerror = 0;
            rep.maxerror = 0;
            relcnt = 0;
            for(i=0; i<=n-1; i++)
            {
                v = 0.0;
                for(i_=0; i_<=m-1;i_++)
                {
                    v += fmatrix[i,i_]*c[i_];
                }
                rep.rmserror = rep.rmserror+AP.Math.Sqr(v-y[i]);
                rep.avgerror = rep.avgerror+Math.Abs(v-y[i]);
                if( (double)(y[i])!=(double)(0) )
                {
                    rep.avgrelerror = rep.avgrelerror+Math.Abs(v-y[i])/Math.Abs(y[i]);
                    relcnt = relcnt+1;
                }
                rep.maxerror = Math.Max(rep.maxerror, Math.Abs(v-y[i]));
            }
            rep.rmserror = Math.Sqrt(rep.rmserror/n);
            rep.avgerror = rep.avgerror/n;
            if( relcnt!=0 )
            {
                rep.avgrelerror = rep.avgrelerror/relcnt;
            }
        }
예제 #6
0
        /*************************************************************************
        This is internal function for Chebyshev fitting.

        It assumes that input data are normalized:
        * X/XC belong to [-1,+1],
        * mean(Y)=0, stddev(Y)=1.

        It does not checks inputs for errors.

        This function is used to fit general (shifted) Chebyshev models, power
        basis models or barycentric models.

        INPUT PARAMETERS:
            X   -   points, array[0..N-1].
            Y   -   function values, array[0..N-1].
            W   -   weights, array[0..N-1]
            N   -   number of points, N>0.
            XC  -   points where polynomial values/derivatives are constrained,
                    array[0..K-1].
            YC  -   values of constraints, array[0..K-1]
            DC  -   array[0..K-1], types of constraints:
                    * DC[i]=0   means that P(XC[i])=YC[i]
                    * DC[i]=1   means that P'(XC[i])=YC[i]
            K   -   number of constraints, 0<=K<M.
                    K=0 means no constraints (XC/YC/DC are not used in such cases)
            M   -   number of basis functions (= polynomial_degree + 1), M>=1

        OUTPUT PARAMETERS:
            Info-   same format as in LSFitLinearW() subroutine:
                    * Info>0    task is solved
                    * Info<=0   an error occured:
                                -4 means inconvergence of internal SVD
                                -3 means inconsistent constraints
            C   -   interpolant in Chebyshev form; [-1,+1] is used as base interval
            Rep -   report, same format as in LSFitLinearW() subroutine.
                    Following fields are set:
                    * RMSError      rms error on the (X,Y).
                    * AvgError      average error on the (X,Y).
                    * AvgRelError   average relative error on the non-zero Y
                    * MaxError      maximum error
                                    NON-WEIGHTED ERRORS ARE CALCULATED

        IMPORTANT:
            this subroitine doesn't calculate task's condition number for K<>0.

          -- ALGLIB PROJECT --
             Copyright 10.12.2009 by Bochkanov Sergey
        *************************************************************************/
        private static void internalchebyshevfit(double[] x,
            double[] y,
            double[] w,
            int n,
            double[] xc,
            double[] yc,
            int[] dc,
            int k,
            int m,
            ref int info,
            ref double[] c,
            lsfitreport rep)
        {
            double[] y2 = new double[0];
            double[] w2 = new double[0];
            double[] tmp = new double[0];
            double[] tmp2 = new double[0];
            double[] tmpdiff = new double[0];
            double[] bx = new double[0];
            double[] by = new double[0];
            double[] bw = new double[0];
            double[,] fmatrix = new double[0,0];
            double[,] cmatrix = new double[0,0];
            int i = 0;
            int j = 0;
            double mx = 0;
            double decay = 0;
            int i_ = 0;

            xc = (double[])xc.Clone();
            yc = (double[])yc.Clone();
            info = 0;
            c = new double[0];

            clearreport(rep);
            
            //
            // weight decay for correct handling of task which becomes
            // degenerate after constraints are applied
            //
            decay = 10000*math.machineepsilon;
            
            //
            // allocate space, initialize/fill:
            // * FMatrix-   values of basis functions at X[]
            // * CMatrix-   values (derivatives) of basis functions at XC[]
            // * fill constraints matrix
            // * fill first N rows of design matrix with values
            // * fill next M rows of design matrix with regularizing term
            // * append M zeros to Y
            // * append M elements, mean(abs(W)) each, to W
            //
            y2 = new double[n+m];
            w2 = new double[n+m];
            tmp = new double[m];
            tmpdiff = new double[m];
            fmatrix = new double[n+m, m];
            if( k>0 )
            {
                cmatrix = new double[k, m+1];
            }
            
            //
            // Fill design matrix, Y2, W2:
            // * first N rows with basis functions for original points
            // * next M rows with decay terms
            //
            for(i=0; i<=n-1; i++)
            {
                
                //
                // prepare Ith row
                // use Tmp for calculations to avoid multidimensional arrays overhead
                //
                for(j=0; j<=m-1; j++)
                {
                    if( j==0 )
                    {
                        tmp[j] = 1;
                    }
                    else
                    {
                        if( j==1 )
                        {
                            tmp[j] = x[i];
                        }
                        else
                        {
                            tmp[j] = 2*x[i]*tmp[j-1]-tmp[j-2];
                        }
                    }
                }
                for(i_=0; i_<=m-1;i_++)
                {
                    fmatrix[i,i_] = tmp[i_];
                }
            }
            for(i=0; i<=m-1; i++)
            {
                for(j=0; j<=m-1; j++)
                {
                    if( i==j )
                    {
                        fmatrix[n+i,j] = decay;
                    }
                    else
                    {
                        fmatrix[n+i,j] = 0;
                    }
                }
            }
            for(i_=0; i_<=n-1;i_++)
            {
                y2[i_] = y[i_];
            }
            for(i_=0; i_<=n-1;i_++)
            {
                w2[i_] = w[i_];
            }
            mx = 0;
            for(i=0; i<=n-1; i++)
            {
                mx = mx+Math.Abs(w[i]);
            }
            mx = mx/n;
            for(i=0; i<=m-1; i++)
            {
                y2[n+i] = 0;
                w2[n+i] = mx;
            }
            
            //
            // fill constraints matrix
            //
            for(i=0; i<=k-1; i++)
            {
                
                //
                // prepare Ith row
                // use Tmp for basis function values,
                // TmpDiff for basos function derivatives
                //
                for(j=0; j<=m-1; j++)
                {
                    if( j==0 )
                    {
                        tmp[j] = 1;
                        tmpdiff[j] = 0;
                    }
                    else
                    {
                        if( j==1 )
                        {
                            tmp[j] = xc[i];
                            tmpdiff[j] = 1;
                        }
                        else
                        {
                            tmp[j] = 2*xc[i]*tmp[j-1]-tmp[j-2];
                            tmpdiff[j] = 2*(tmp[j-1]+xc[i]*tmpdiff[j-1])-tmpdiff[j-2];
                        }
                    }
                }
                if( dc[i]==0 )
                {
                    for(i_=0; i_<=m-1;i_++)
                    {
                        cmatrix[i,i_] = tmp[i_];
                    }
                }
                if( dc[i]==1 )
                {
                    for(i_=0; i_<=m-1;i_++)
                    {
                        cmatrix[i,i_] = tmpdiff[i_];
                    }
                }
                cmatrix[i,m] = yc[i];
            }
            
            //
            // Solve constrained task
            //
            if( k>0 )
            {
                
                //
                // solve using regularization
                //
                lsfitlinearwc(y2, w2, fmatrix, cmatrix, n+m, m, k, ref info, ref c, rep);
            }
            else
            {
                
                //
                // no constraints, no regularization needed
                //
                lsfitlinearwc(y, w, fmatrix, cmatrix, n, m, 0, ref info, ref c, rep);
            }
            if( info<0 )
            {
                return;
            }
        }
예제 #7
0
 private static void clearreport(lsfitreport rep)
 {
     rep.taskrcond = 0;
     rep.iterationscount = 0;
     rep.varidx = -1;
     rep.rmserror = 0;
     rep.avgerror = 0;
     rep.avgrelerror = 0;
     rep.maxerror = 0;
     rep.wrmserror = 0;
     rep.r2 = 0;
     rep.covpar = new double[0, 0];
     rep.errpar = new double[0];
     rep.errcurve = new double[0];
     rep.noise = new double[0];
 }
예제 #8
0
 /*************************************************************************
 Single-threaded stub. HPC ALGLIB replaces it by multithreaded code.
 *************************************************************************/
 public static void _pexec_lsfitlinearc(double[] y,
     double[,] fmatrix,
     double[,] cmatrix,
     int n,
     int m,
     int k,
     ref int info,
     ref double[] c,
     lsfitreport rep)
 {
     lsfitlinearc(y,fmatrix,cmatrix,n,m,k,ref info,ref c,rep);
 }
        /*************************************************************************
        Nonlinear least squares fitting results.

        Called after return from LSFitFit().

        INPUT PARAMETERS:
            State   -   algorithm state

        OUTPUT PARAMETERS:
            Info    -   completetion code:
                            * -7    gradient verification failed.
                                    See LSFitSetGradientCheck() for more information.
                            *  1    relative function improvement is no more than
                                    EpsF.
                            *  2    relative step is no more than EpsX.
                            *  4    gradient norm is no more than EpsG
                            *  5    MaxIts steps was taken
                            *  7    stopping conditions are too stringent,
                                    further improvement is impossible
            C       -   array[0..K-1], solution
            Rep     -   optimization report. Following fields are set:
                        * Rep.TerminationType completetion code:
                        * RMSError          rms error on the (X,Y).
                        * AvgError          average error on the (X,Y).
                        * AvgRelError       average relative error on the non-zero Y
                        * MaxError          maximum error
                                            NON-WEIGHTED ERRORS ARE CALCULATED
                        * WRMSError         weighted rms error on the (X,Y).


          -- ALGLIB --
             Copyright 17.08.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void lsfitresults(lsfitstate state,
            ref int info,
            ref double[] c,
            lsfitreport rep)
        {
            int i_ = 0;

            info = 0;
            c = new double[0];

            info = state.repterminationtype;
            rep.varidx = state.repvaridx;
            if( info>0 )
            {
                c = new double[state.k];
                for(i_=0; i_<=state.k-1;i_++)
                {
                    c[i_] = state.c[i_];
                }
                rep.rmserror = state.reprmserror;
                rep.wrmserror = state.repwrmserror;
                rep.avgerror = state.repavgerror;
                rep.avgrelerror = state.repavgrelerror;
                rep.maxerror = state.repmaxerror;
                rep.iterationscount = state.repiterationscount;
            }
        }
예제 #10
0
        /*************************************************************************
        This is "expert" 4PL/5PL fitting function, which can be used if  you  need
        better control over fitting process than provided  by  LogisticFit4()  or
        LogisticFit5().

        This function fits model of the form

            F(x|A,B,C,D)   = D+(A-D)/(1+Power(x/C,B))           (4PL model)

        or

            F(x|A,B,C,D,G) = D+(A-D)/Power(1+Power(x/C,B),G)    (5PL model)
            
        Here:
            * A, D - unconstrained
            * B>=0 for 4PL, unconstrained for 5PL
            * C>0
            * G>0 (if present)

        INPUT PARAMETERS:
            X       -   array[N], stores X-values.
                        MUST include only non-negative numbers  (but  may  include
                        zero values). Can be unsorted.
            Y       -   array[N], values to fit.
            N       -   number of points. If N is less than  length  of  X/Y, only
                        leading N elements are used.
            CnstrLeft-  optional equality constraint for model value at the   left
                        boundary (at X=0). Specify NAN (Not-a-Number)  if  you  do
                        not need constraint on the model value at X=0 (in C++  you
                        can pass alglib::fp_nan as parameter, in  C#  it  will  be
                        Double.NaN).
                        See  below,  section  "EQUALITY  CONSTRAINTS"   for   more
                        information about constraints.
            CnstrRight- optional equality constraint for model value at X=infinity.
                        Specify NAN (Not-a-Number) if you do not  need  constraint
                        on the model value (in C++  you can pass alglib::fp_nan as
                        parameter, in  C# it will  be Double.NaN).
                        See  below,  section  "EQUALITY  CONSTRAINTS"   for   more
                        information about constraints.
            Is4PL   -   whether 4PL or 5PL models are fitted
            LambdaV -   regularization coefficient, LambdaV>=0.
                        Set it to zero unless you know what you are doing.
            EpsX    -   stopping condition (step size), EpsX>=0.
                        Zero value means that small step is automatically chosen.
                        See notes below for more information.
            RsCnt   -   number of repeated restarts from  random  points.  4PL/5PL
                        models are prone to problem of bad local extrema. Utilizing
                        multiple random restarts allows  us  to  improve algorithm
                        convergence.
                        RsCnt>=0.
                        Zero value means that function automatically choose  small
                        amount of restarts (recommended).
                        
        OUTPUT PARAMETERS:
            A, B, C, D- parameters of 4PL model
            G       -   parameter of 5PL model; for Is4PL=True, G=1 is returned.
            Rep     -   fitting report. This structure has many fields,  but  ONLY
                        ONES LISTED BELOW ARE SET:
                        * Rep.IterationsCount - number of iterations performed
                        * Rep.RMSError - root-mean-square error
                        * Rep.AvgError - average absolute error
                        * Rep.AvgRelError - average relative error (calculated for
                          non-zero Y-values)
                        * Rep.MaxError - maximum absolute error
                        * Rep.R2 - coefficient of determination,  R-squared.  This
                          coefficient   is  calculated  as  R2=1-RSS/TSS  (in case
                          of nonlinear  regression  there  are  multiple  ways  to
                          define R2, each of them giving different results).
                        
        NOTE: after  you  obtained  coefficients,  you  can  evaluate  model  with
              LogisticCalc5() function.

        NOTE: step is automatically scaled according to scale of parameters  being
              fitted before we compare its length with EpsX. Thus,  this  function
              can be used to fit data with very small or very large values without
              changing EpsX.

        EQUALITY CONSTRAINTS ON PARAMETERS

        4PL/5PL solver supports equality constraints on model values at  the  left
        boundary (X=0) and right  boundary  (X=infinity).  These  constraints  are
        completely optional and you can specify both of them, only  one  -  or  no
        constraints at all.

        Parameter  CnstrLeft  contains  left  constraint (or NAN for unconstrained
        fitting), and CnstrRight contains right  one.  For  4PL,  left  constraint
        ALWAYS corresponds to parameter A, and right one is ALWAYS  constraint  on
        D. That's because 4PL model is normalized in such way that B>=0.

        For 5PL model things are different. Unlike  4PL  one,  5PL  model  is  NOT
        symmetric with respect to  change  in  sign  of  B. Thus, negative B's are
        possible, and left constraint may constrain parameter A (for positive B's)
        - or parameter D (for negative B's). Similarly changes  meaning  of  right
        constraint.

        You do not have to decide what parameter to  constrain  -  algorithm  will
        automatically determine correct parameters as fitting progresses. However,
        question highlighted above is important when you interpret fitting results.
            

          -- ALGLIB PROJECT --
             Copyright 14.02.2014 by Bochkanov Sergey
        *************************************************************************/
        public static void logisticfit45x(double[] x,
            double[] y,
            int n,
            double cnstrleft,
            double cnstrright,
            bool is4pl,
            double lambdav,
            double epsx,
            int rscnt,
            ref double a,
            ref double b,
            ref double c,
            ref double d,
            ref double g,
            lsfitreport rep)
        {
            int i = 0;
            int k = 0;
            int innerit = 0;
            int outerit = 0;
            int nz = 0;
            double v = 0;
            double b00 = 0;
            double b01 = 0;
            double b10 = 0;
            double b11 = 0;
            double b30 = 0;
            double b31 = 0;
            double[] p0 = new double[0];
            double[] p1 = new double[0];
            double[] p2 = new double[0];
            double[] bndl = new double[0];
            double[] bndu = new double[0];
            double[] s = new double[0];
            double[,] z = new double[0,0];
            hqrnd.hqrndstate rs = new hqrnd.hqrndstate();
            minlm.minlmstate state = new minlm.minlmstate();
            minlm.minlmreport replm = new minlm.minlmreport();
            int maxits = 0;
            double fbest = 0;
            double flast = 0;
            double flast2 = 0;
            double scalex = 0;
            double scaley = 0;
            double[] bufx = new double[0];
            double[] bufy = new double[0];
            double rss = 0;
            double tss = 0;
            double meany = 0;

            x = (double[])x.Clone();
            y = (double[])y.Clone();
            a = 0;
            b = 0;
            c = 0;
            d = 0;
            g = 0;

            alglib.ap.assert(math.isfinite(epsx), "LogisticFitX: EpsX is infinite/NAN");
            alglib.ap.assert(math.isfinite(lambdav), "LogisticFitX: LambdaV is infinite/NAN");
            alglib.ap.assert(math.isfinite(cnstrleft) || Double.IsNaN(cnstrleft), "LogisticFitX: CnstrLeft is NOT finite or NAN");
            alglib.ap.assert(math.isfinite(cnstrright) || Double.IsNaN(cnstrright), "LogisticFitX: CnstrRight is NOT finite or NAN");
            alglib.ap.assert((double)(lambdav)>=(double)(0), "LogisticFitX: negative LambdaV");
            alglib.ap.assert(n>0, "LogisticFitX: N<=0");
            alglib.ap.assert(rscnt>=0, "LogisticFitX: RsCnt<0");
            alglib.ap.assert((double)(epsx)>=(double)(0), "LogisticFitX: EpsX<0");
            alglib.ap.assert(alglib.ap.len(x)>=n, "LogisticFitX: Length(X)<N");
            alglib.ap.assert(alglib.ap.len(y)>=n, "LogisticFitX: Length(Y)<N");
            alglib.ap.assert(apserv.isfinitevector(x, n), "LogisticFitX: X contains infinite/NAN values");
            alglib.ap.assert(apserv.isfinitevector(y, n), "LogisticFitX: X contains infinite/NAN values");
            hqrnd.hqrndseed(2211, 1033044, rs);
            clearreport(rep);
            if( (double)(epsx)==(double)(0) )
            {
                epsx = 1.0E-10;
            }
            if( rscnt==0 )
            {
                rscnt = 4;
            }
            maxits = 1000;
            
            //
            // Sort points by X.
            // Determine number of zero and non-zero values.
            //
            tsort.tagsortfastr(ref x, ref y, ref bufx, ref bufy, n);
            alglib.ap.assert((double)(x[0])>=(double)(0), "LogisticFitX: some X[] are negative");
            nz = n;
            for(i=0; i<=n-1; i++)
            {
                if( (double)(x[i])>(double)(0) )
                {
                    nz = i;
                    break;
                }
            }
            
            //
            // For NZ=N (all X[] are zero) special code is used.
            // For NZ<N we use general-purpose code.
            //
            rep.iterationscount = 0;
            if( nz==n )
            {
                
                //
                // NZ=N, degenerate problem.
                // No need to run optimizer.
                //
                v = 0.0;
                for(i=0; i<=n-1; i++)
                {
                    v = v+y[i];
                }
                v = v/n;
                if( math.isfinite(cnstrleft) )
                {
                    a = cnstrleft;
                }
                else
                {
                    a = v;
                }
                b = 1;
                c = 1;
                if( math.isfinite(cnstrright) )
                {
                    d = cnstrright;
                }
                else
                {
                    d = a;
                }
                g = 1;
            }
            else
            {
                
                //
                // Non-degenerate problem.
                // Determine scale of data.
                //
                scalex = x[nz+(n-nz)/2];
                alglib.ap.assert((double)(scalex)>(double)(0), "LogisticFitX: internal error");
                v = 0.0;
                for(i=0; i<=n-1; i++)
                {
                    v = v+y[i];
                }
                v = v/n;
                scaley = 0.0;
                for(i=0; i<=n-1; i++)
                {
                    scaley = scaley+math.sqr(y[i]-v);
                }
                scaley = Math.Sqrt(scaley/n);
                if( (double)(scaley)==(double)(0) )
                {
                    scaley = 1.0;
                }
                s = new double[5];
                s[0] = scaley;
                s[1] = 0.1;
                s[2] = scalex;
                s[3] = scaley;
                s[4] = 0.1;
                p0 = new double[5];
                p0[0] = 0;
                p0[1] = 0;
                p0[2] = 0;
                p0[3] = 0;
                p0[4] = 0;
                bndl = new double[5];
                bndu = new double[5];
                minlm.minlmcreatevj(5, n+5, p0, state);
                minlm.minlmsetscale(state, s);
                minlm.minlmsetcond(state, 0.0, 0.0, epsx, maxits);
                minlm.minlmsetxrep(state, true);
                
                //
                // Main loop - includes THREE (!) nested iterations:
                //
                // 1. Inner iteration is minimization of target function from
                //    the current initial point P1 subject to boundary constraints
                //    given by arrays BndL and BndU.
                //
                // 2. Middle iteration changes boundary constraints from tight to
                //    relaxed ones:
                //    * at the first middle iteration we optimize with "tight"
                //      constraints on parameters B and C (P[1] and P[2]). It
                //      allows us to find good initial point for the next middle
                //      iteration without risk of running into "hard" points (B=0, C=0).
                //      Initial point is initialized by outer iteration.
                //      Solution is placed to P1.
                //    * at the second middle iteration we relax boundary constraints
                //      on B and C. Solution P1 from the first middle iteration is
                //      used as initial point for the second one.
                //    * both first and second iterations are 4PL models, even when
                //      we fit 5PL.
                //    * additionally, for 5PL models, we use results from the second
                //      middle iteration is initial guess for 5PL fit.
                //    * after middle iteration is over we compare quality of the
                //      solution stored in P1 and offload it to A/B/C/D/G, if it
                //      is better.
                //
                // 3. Outer iteration (starts below) changes following parameters:
                //    * initial point
                //    * "tight" constraints BndL/BndU
                //    * "relaxed" constraints BndL/BndU
                //
                // Below we prepare combined matrix Z of optimization settings for
                // outer/middle iterations:
                //
                //     [ P00 BndL00 BndU00 BndL01 BndU01 ]
                //     [                                 ]
                //     [ P10 BndL10 BndU10 BndL11 BndU11 ]
                //
                // Here:
                // * Pi0 is initial point for I-th outer iteration
                // * BndLij is lower boundary for I-th outer iteration, J-th inner iteration
                // * BndUij - same as BndLij
                //
                z = new double[rscnt, 5+4*5];
                for(i=0; i<=rscnt-1; i++)
                {
                    if( math.isfinite(cnstrleft) )
                    {
                        z[i,0] = cnstrleft;
                    }
                    else
                    {
                        z[i,0] = y[0]+0.25*scaley*(hqrnd.hqrnduniformr(rs)-0.5);
                    }
                    z[i,1] = 0.5+hqrnd.hqrnduniformr(rs);
                    z[i,2] = x[nz+hqrnd.hqrnduniformi(rs, n-nz)];
                    if( math.isfinite(cnstrright) )
                    {
                        z[i,3] = cnstrright;
                    }
                    else
                    {
                        z[i,3] = y[n-1]+0.25*scaley*(hqrnd.hqrnduniformr(rs)-0.5);
                    }
                    z[i,4] = 1.0;
                    if( math.isfinite(cnstrleft) )
                    {
                        z[i,5+0] = cnstrleft;
                        z[i,10+0] = cnstrleft;
                    }
                    else
                    {
                        z[i,5+0] = Double.NegativeInfinity;
                        z[i,10+0] = Double.PositiveInfinity;
                    }
                    z[i,5+1] = 0.5;
                    z[i,10+1] = 2.0;
                    z[i,5+2] = 0.5*scalex;
                    z[i,10+2] = 2.0*scalex;
                    if( math.isfinite(cnstrright) )
                    {
                        z[i,5+3] = cnstrright;
                        z[i,10+3] = cnstrright;
                    }
                    else
                    {
                        z[i,5+3] = Double.NegativeInfinity;
                        z[i,10+3] = Double.PositiveInfinity;
                    }
                    z[i,5+4] = 1.0;
                    z[i,10+4] = 1.0;
                    if( math.isfinite(cnstrleft) )
                    {
                        z[i,15+0] = cnstrleft;
                        z[i,20+0] = cnstrleft;
                    }
                    else
                    {
                        z[i,15+0] = Double.NegativeInfinity;
                        z[i,20+0] = Double.PositiveInfinity;
                    }
                    z[i,15+1] = 0.01;
                    z[i,20+1] = Double.PositiveInfinity;
                    z[i,15+2] = math.machineepsilon*scalex;
                    z[i,20+2] = Double.PositiveInfinity;
                    if( math.isfinite(cnstrright) )
                    {
                        z[i,15+3] = cnstrright;
                        z[i,20+3] = cnstrright;
                    }
                    else
                    {
                        z[i,15+3] = Double.NegativeInfinity;
                        z[i,20+3] = Double.PositiveInfinity;
                    }
                    z[i,15+4] = 1.0;
                    z[i,20+4] = 1.0;
                }
                
                //
                // Run outer iterations
                //
                a = 0;
                b = 1;
                c = 1;
                d = 1;
                g = 1;
                fbest = math.maxrealnumber;
                p1 = new double[5];
                p2 = new double[5];
                for(outerit=0; outerit<=alglib.ap.rows(z)-1; outerit++)
                {
                    
                    //
                    // Beginning of the middle iterations.
                    // Prepare initial point P1.
                    //
                    for(i=0; i<=4; i++)
                    {
                        p1[i] = z[outerit,i];
                    }
                    flast = math.maxrealnumber;
                    for(innerit=0; innerit<=1; innerit++)
                    {
                        
                        //
                        // Set current boundary constraints.
                        // Run inner iteration.
                        //
                        for(i=0; i<=4; i++)
                        {
                            bndl[i] = z[outerit,5+innerit*10+0+i];
                            bndu[i] = z[outerit,5+innerit*10+5+i];
                        }
                        minlm.minlmsetbc(state, bndl, bndu);
                        logisticfitinternal(x, y, n, true, lambdav, state, replm, ref p1, ref flast);
                        rep.iterationscount = rep.iterationscount+replm.iterationscount;
                    }
                    
                    //
                    // Middle iteration: try to fit with 5-parameter logistic model (if needed).
                    //
                    // We perform two attempts to fit: one with B>0, another one with B<0.
                    // For PL4, these are equivalent up to transposition of A/D, but for 5PL
                    // sign of B is very important.
                    //
                    // NOTE: results of 4PL fit are used as initial point for 5PL.
                    //
                    if( !is4pl )
                    {
                        
                        //
                        // Loosen constraints on G,
                        // save constraints on A/B/D to B0/B1
                        //
                        bndl[4] = 0.1;
                        bndu[4] = 10.0;
                        b00 = bndl[0];
                        b01 = bndu[0];
                        b10 = bndl[1];
                        b11 = bndu[1];
                        b30 = bndl[3];
                        b31 = bndu[3];
                        
                        //
                        // First attempt: fitting with positive B
                        //
                        p2[0] = p1[0];
                        p2[1] = p1[1];
                        p2[2] = p1[2];
                        p2[3] = p1[3];
                        p2[4] = p1[4];
                        bndl[0] = b00;
                        bndu[0] = b01;
                        bndl[1] = b10;
                        bndu[1] = b11;
                        bndl[3] = b30;
                        bndu[3] = b31;
                        minlm.minlmsetbc(state, bndl, bndu);
                        logisticfitinternal(x, y, n, false, lambdav, state, replm, ref p2, ref flast2);
                        rep.iterationscount = rep.iterationscount+replm.iterationscount;
                        if( (double)(flast2)<(double)(flast) )
                        {
                            for(i=0; i<=4; i++)
                            {
                                p1[i] = p2[i];
                            }
                            flast = flast2;
                        }
                        
                        //
                        // First attempt: fitting with negative B
                        //
                        p2[0] = p1[3];
                        p2[1] = -p1[1];
                        p2[2] = p1[2];
                        p2[3] = p1[0];
                        p2[4] = p1[4];
                        bndl[0] = b30;
                        bndu[0] = b31;
                        bndl[1] = -b11;
                        bndu[1] = -b10;
                        bndl[3] = b00;
                        bndu[3] = b01;
                        minlm.minlmsetbc(state, bndl, bndu);
                        logisticfitinternal(x, y, n, false, lambdav, state, replm, ref p2, ref flast2);
                        rep.iterationscount = rep.iterationscount+replm.iterationscount;
                        if( (double)(flast2)<(double)(flast) )
                        {
                            for(i=0; i<=4; i++)
                            {
                                p1[i] = p2[i];
                            }
                            flast = flast2;
                        }
                    }
                    
                    //
                    // Middle iteration is done, compare its results with best value
                    // found so far.
                    //
                    if( (double)(flast)<(double)(fbest) )
                    {
                        a = p1[0];
                        b = p1[1];
                        c = p1[2];
                        d = p1[3];
                        g = p1[4];
                        fbest = flast;
                    }
                }
            }
            
            //
            // Calculate errors
            //
            rep.rmserror = 0;
            rep.avgerror = 0;
            rep.avgrelerror = 0;
            rep.maxerror = 0;
            k = 0;
            rss = 0.0;
            tss = 0.0;
            meany = 0.0;
            for(i=0; i<=n-1; i++)
            {
                meany = meany+y[i];
            }
            meany = meany/n;
            for(i=0; i<=n-1; i++)
            {
                
                //
                // Calculate residual from regression
                //
                if( (double)(x[i])>(double)(0) )
                {
                    v = d+(a-d)/Math.Pow(1.0+Math.Pow(x[i]/c, b), g)-y[i];
                }
                else
                {
                    if( (double)(b)>=(double)(0) )
                    {
                        v = a-y[i];
                    }
                    else
                    {
                        v = d-y[i];
                    }
                }
                
                //
                // Update RSS (residual sum of squares) and TSS (total sum of squares)
                // which are used to calculate coefficient of determination.
                //
                // NOTE: we use formula R2 = 1-RSS/TSS because it has nice property of
                //       being equal to 0.0 if and only if model perfectly fits data.
                //
                //       When we fit nonlinear models, there are exist multiple ways of
                //       determining R2, each of them giving different results. Formula
                //       above is the most intuitive one.
                //
                rss = rss+v*v;
                tss = tss+math.sqr(y[i]-meany);
                
                //
                // Update errors
                //
                rep.rmserror = rep.rmserror+math.sqr(v);
                rep.avgerror = rep.avgerror+Math.Abs(v);
                if( (double)(y[i])!=(double)(0) )
                {
                    rep.avgrelerror = rep.avgrelerror+Math.Abs(v/y[i]);
                    k = k+1;
                }
                rep.maxerror = Math.Max(rep.maxerror, Math.Abs(v));
            }
            rep.rmserror = Math.Sqrt(rep.rmserror/n);
            rep.avgerror = rep.avgerror/n;
            if( k>0 )
            {
                rep.avgrelerror = rep.avgrelerror/k;
            }
            rep.r2 = 1.0-rss/tss;
        }
예제 #11
0
 /*************************************************************************
 Single-threaded stub. HPC ALGLIB replaces it by multithreaded code.
 *************************************************************************/
 public static void _pexec_lsfitlinearw(double[] y,
     double[] w,
     double[,] fmatrix,
     int n,
     int m,
     ref int info,
     ref double[] c,
     lsfitreport rep)
 {
     lsfitlinearw(y,w,fmatrix,n,m,ref info,ref c,rep);
 }
예제 #12
0
        /*************************************************************************
        This function fits five-parameter logistic (5PL) model  to  data  provided
        by user, subject to optional equality constraints on parameters A  and  D.
        5PL model has following form:

            F(x|A,B,C,D,G) = D+(A-D)/Power(1+Power(x/C,B),G)

        Here:
            * A, D - with optional equality constraints
            * B - unconstrained
            * C>0
            * G>0
            
        IMPORTANT: unlike in  4PL  fitting,  output  of  this  function   is   NOT
                   constrained in  such  way that B is guaranteed to be  positive.
                   Furthermore,  unlike  4PL,  5PL  model  is  NOT  symmetric with
                   respect to B, so you can NOT transform model to equivalent one,
                   with B having desired sign (>0 or <0).
            
        5PL fitting is implemented as follows:
        * we perform small number of restarts from random locations which helps to
          solve problem of bad local extrema. Locations are only partially  random
          - we use input data to determine good  initial  guess,  but  we  include
          controlled amount of randomness.
        * we perform Levenberg-Marquardt fitting with very  tight  constraints  on
          parameters B and C - it allows us to find good  initial  guess  for  the
          second stage without risk of running into "flat spot".  Parameter  G  is
          fixed at G=1.
        * second  Levenberg-Marquardt  round  is   performed   without   excessive
          constraints on B and C, but with G still equal to 1.  Results  from  the
          previous round are used as initial guess.
        * third Levenberg-Marquardt round relaxes constraints on G  and  tries  two
          different models - one with B>0 and one with B<0.
        * after fitting is done, we compare results with best values found so far,
          rewrite "best solution" if needed, and move to next random location.
          
        Overall algorithm is very stable and is not prone to  bad  local  extrema.
        Furthermore, it automatically scales when input data have  very  large  or
        very small range.

        INPUT PARAMETERS:
            X       -   array[N], stores X-values.
                        MUST include only non-negative numbers  (but  may  include
                        zero values). Can be unsorted.
            Y       -   array[N], values to fit.
            N       -   number of points. If N is less than  length  of  X/Y, only
                        leading N elements are used.
            CnstrLeft-  optional equality constraint for model value at the   left
                        boundary (at X=0). Specify NAN (Not-a-Number)  if  you  do
                        not need constraint on the model value at X=0 (in C++  you
                        can pass alglib::fp_nan as parameter, in  C#  it  will  be
                        Double.NaN).
                        See  below,  section  "EQUALITY  CONSTRAINTS"   for   more
                        information about constraints.
            CnstrRight- optional equality constraint for model value at X=infinity.
                        Specify NAN (Not-a-Number) if you do not  need  constraint
                        on the model value (in C++  you can pass alglib::fp_nan as
                        parameter, in  C# it will  be Double.NaN).
                        See  below,  section  "EQUALITY  CONSTRAINTS"   for   more
                        information about constraints.
                        
        OUTPUT PARAMETERS:
            A,B,C,D,G-  parameters of 5PL model
            Rep     -   fitting report. This structure has many fields,  but  ONLY
                        ONES LISTED BELOW ARE SET:
                        * Rep.IterationsCount - number of iterations performed
                        * Rep.RMSError - root-mean-square error
                        * Rep.AvgError - average absolute error
                        * Rep.AvgRelError - average relative error (calculated for
                          non-zero Y-values)
                        * Rep.MaxError - maximum absolute error
                        * Rep.R2 - coefficient of determination,  R-squared.  This
                          coefficient   is  calculated  as  R2=1-RSS/TSS  (in case
                          of nonlinear  regression  there  are  multiple  ways  to
                          define R2, each of them giving different results).

        NOTE: after  you  obtained  coefficients,  you  can  evaluate  model  with
              LogisticCalc5() function.

        NOTE: if you need better control over fitting process than provided by this
              function, you may use LogisticFit45X().
                        
        NOTE: step is automatically scaled according to scale of parameters  being
              fitted before we compare its length with EpsX. Thus,  this  function
              can be used to fit data with very small or very large values without
              changing EpsX.

        EQUALITY CONSTRAINTS ON PARAMETERS

        5PL solver supports equality constraints on model  values  at   the   left
        boundary (X=0) and right  boundary  (X=infinity).  These  constraints  are
        completely optional and you can specify both of them, only  one  -  or  no
        constraints at all.

        Parameter  CnstrLeft  contains  left  constraint (or NAN for unconstrained
        fitting), and CnstrRight contains right  one.

        Unlike 4PL one, 5PL model is NOT symmetric with respect to  change in sign
        of B. Thus, negative B's are possible, and left constraint  may  constrain
        parameter A (for positive B's)  -  or  parameter  D  (for  negative  B's).
        Similarly changes meaning of right constraint.

        You do not have to decide what parameter to  constrain  -  algorithm  will
        automatically determine correct parameters as fitting progresses. However,
        question highlighted above is important when you interpret fitting results.
            

          -- ALGLIB PROJECT --
             Copyright 14.02.2014 by Bochkanov Sergey
        *************************************************************************/
        public static void logisticfit5ec(double[] x,
            double[] y,
            int n,
            double cnstrleft,
            double cnstrright,
            ref double a,
            ref double b,
            ref double c,
            ref double d,
            ref double g,
            lsfitreport rep)
        {
            x = (double[])x.Clone();
            y = (double[])y.Clone();
            a = 0;
            b = 0;
            c = 0;
            d = 0;
            g = 0;

            logisticfit45x(x, y, n, cnstrleft, cnstrright, false, 0.0, 0.0, 0, ref a, ref b, ref c, ref d, ref g, rep);
        }
예제 #13
0
        /*************************************************************************
        This function fits five-parameter logistic (5PL) model  to  data  provided
        by user. 5PL model has following form:

            F(x|A,B,C,D,G) = D+(A-D)/Power(1+Power(x/C,B),G)

        Here:
            * A, D - unconstrained
            * B - unconstrained
            * C>0
            * G>0
            
        IMPORTANT: unlike in  4PL  fitting,  output  of  this  function   is   NOT
                   constrained in  such  way that B is guaranteed to be  positive.
                   Furthermore,  unlike  4PL,  5PL  model  is  NOT  symmetric with
                   respect to B, so you can NOT transform model to equivalent one,
                   with B having desired sign (>0 or <0).
            
        5PL fitting is implemented as follows:
        * we perform small number of restarts from random locations which helps to
          solve problem of bad local extrema. Locations are only partially  random
          - we use input data to determine good  initial  guess,  but  we  include
          controlled amount of randomness.
        * we perform Levenberg-Marquardt fitting with very  tight  constraints  on
          parameters B and C - it allows us to find good  initial  guess  for  the
          second stage without risk of running into "flat spot".  Parameter  G  is
          fixed at G=1.
        * second  Levenberg-Marquardt  round  is   performed   without   excessive
          constraints on B and C, but with G still equal to 1.  Results  from  the
          previous round are used as initial guess.
        * third Levenberg-Marquardt round relaxes constraints on G  and  tries  two
          different models - one with B>0 and one with B<0.
        * after fitting is done, we compare results with best values found so far,
          rewrite "best solution" if needed, and move to next random location.
          
        Overall algorithm is very stable and is not prone to  bad  local  extrema.
        Furthermore, it automatically scales when input data have  very  large  or
        very small range.

        INPUT PARAMETERS:
            X       -   array[N], stores X-values.
                        MUST include only non-negative numbers  (but  may  include
                        zero values). Can be unsorted.
            Y       -   array[N], values to fit.
            N       -   number of points. If N is less than  length  of  X/Y, only
                        leading N elements are used.
                        
        OUTPUT PARAMETERS:
            A,B,C,D,G-  parameters of 5PL model
            Rep     -   fitting report. This structure has many fields,  but  ONLY
                        ONES LISTED BELOW ARE SET:
                        * Rep.IterationsCount - number of iterations performed
                        * Rep.RMSError - root-mean-square error
                        * Rep.AvgError - average absolute error
                        * Rep.AvgRelError - average relative error (calculated for
                          non-zero Y-values)
                        * Rep.MaxError - maximum absolute error
                        * Rep.R2 - coefficient of determination,  R-squared.  This
                          coefficient   is  calculated  as  R2=1-RSS/TSS  (in case
                          of nonlinear  regression  there  are  multiple  ways  to
                          define R2, each of them giving different results).

        NOTE: after  you  obtained  coefficients,  you  can  evaluate  model  with
              LogisticCalc5() function.

        NOTE: if you need better control over fitting process than provided by this
              function, you may use LogisticFit45X().
                        
        NOTE: step is automatically scaled according to scale of parameters  being
              fitted before we compare its length with EpsX. Thus,  this  function
              can be used to fit data with very small or very large values without
              changing EpsX.
            

          -- ALGLIB PROJECT --
             Copyright 14.02.2014 by Bochkanov Sergey
        *************************************************************************/
        public static void logisticfit5(double[] x,
            double[] y,
            int n,
            ref double a,
            ref double b,
            ref double c,
            ref double d,
            ref double g,
            lsfitreport rep)
        {
            x = (double[])x.Clone();
            y = (double[])y.Clone();
            a = 0;
            b = 0;
            c = 0;
            d = 0;
            g = 0;

            logisticfit45x(x, y, n, Double.NaN, Double.NaN, false, 0.0, 0.0, 0, ref a, ref b, ref c, ref d, ref g, rep);
        }
예제 #14
0
파일: interpolation.cs 프로젝트: Ring-r/opt
    /*************************************************************************
    Nonlinear least squares fitting results.

    Called after return from LSFitFit().

    INPUT PARAMETERS:
        State   -   algorithm state

    OUTPUT PARAMETERS:
        Info    -   completetion code:
                        *  1    relative function improvement is no more than
                                EpsF.
                        *  2    relative step is no more than EpsX.
                        *  4    gradient norm is no more than EpsG
                        *  5    MaxIts steps was taken
                        *  7    stopping conditions are too stringent,
                                further improvement is impossible
        C       -   array[0..K-1], solution
        Rep     -   optimization report. Following fields are set:
                    * Rep.TerminationType completetion code:
                    * RMSError          rms error on the (X,Y).
                    * AvgError          average error on the (X,Y).
                    * AvgRelError       average relative error on the non-zero Y
                    * MaxError          maximum error
                                        NON-WEIGHTED ERRORS ARE CALCULATED


      -- ALGLIB --
         Copyright 17.08.2009 by Bochkanov Sergey
    *************************************************************************/
    public static void lsfitresults(lsfitstate state, out int info, out double[] c, out lsfitreport rep)
    {
        info = 0;
        c = new double[0];
        rep = new lsfitreport();
        lsfit.lsfitresults(state.innerobj, ref info, ref c, rep.innerobj);
        return;
    }
예제 #15
0
        /*************************************************************************
        Nonlinear least squares fitting results.

        Called after return from LSFitFit().

        INPUT PARAMETERS:
            State   -   algorithm state

        OUTPUT PARAMETERS:
            Info    -   completion code:
                            * -7    gradient verification failed.
                                    See LSFitSetGradientCheck() for more information.
                            *  1    relative function improvement is no more than
                                    EpsF.
                            *  2    relative step is no more than EpsX.
                            *  4    gradient norm is no more than EpsG
                            *  5    MaxIts steps was taken
                            *  7    stopping conditions are too stringent,
                                    further improvement is impossible
            C       -   array[0..K-1], solution
            Rep     -   optimization report. On success following fields are set:
                        * R2                non-adjusted coefficient of determination
                                            (non-weighted)
                        * RMSError          rms error on the (X,Y).
                        * AvgError          average error on the (X,Y).
                        * AvgRelError       average relative error on the non-zero Y
                        * MaxError          maximum error
                                            NON-WEIGHTED ERRORS ARE CALCULATED
                        * WRMSError         weighted rms error on the (X,Y).
                        
        ERRORS IN PARAMETERS                
                        
        This  solver  also  calculates different kinds of errors in parameters and
        fills corresponding fields of report:
        * Rep.CovPar        covariance matrix for parameters, array[K,K].
        * Rep.ErrPar        errors in parameters, array[K],
                            errpar = sqrt(diag(CovPar))
        * Rep.ErrCurve      vector of fit errors - standard deviations of empirical
                            best-fit curve from "ideal" best-fit curve built  with
                            infinite number of samples, array[N].
                            errcurve = sqrt(diag(J*CovPar*J')),
                            where J is Jacobian matrix.
        * Rep.Noise         vector of per-point estimates of noise, array[N]

        IMPORTANT:  errors  in  parameters  are  calculated  without  taking  into
                    account boundary/linear constraints! Presence  of  constraints
                    changes distribution of errors, but there is no  easy  way  to
                    account for constraints when you calculate covariance matrix.
                    
        NOTE:       noise in the data is estimated as follows:
                    * for fitting without user-supplied  weights  all  points  are
                      assumed to have same level of noise, which is estimated from
                      the data
                    * for fitting with user-supplied weights we assume that  noise
                      level in I-th point is inversely proportional to Ith weight.
                      Coefficient of proportionality is estimated from the data.
                    
        NOTE:       we apply small amount of regularization when we invert squared
                    Jacobian and calculate covariance matrix. It  guarantees  that
                    algorithm won't divide by zero  during  inversion,  but  skews
                    error estimates a bit (fractional error is about 10^-9).
                    
                    However, we believe that this difference is insignificant  for
                    all practical purposes except for the situation when you  want
                    to compare ALGLIB results with "reference"  implementation  up
                    to the last significant digit.
                    
        NOTE:       covariance matrix is estimated using  correction  for  degrees
                    of freedom (covariances are divided by N-M instead of dividing
                    by N).

          -- ALGLIB --
             Copyright 17.08.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void lsfitresults(lsfitstate state,
            ref int info,
            ref double[] c,
            lsfitreport rep)
        {
            int i = 0;
            int j = 0;
            int i_ = 0;

            info = 0;
            c = new double[0];

            clearreport(rep);
            info = state.repterminationtype;
            rep.varidx = state.repvaridx;
            if( info>0 )
            {
                c = new double[state.k];
                for(i_=0; i_<=state.k-1;i_++)
                {
                    c[i_] = state.c[i_];
                }
                rep.rmserror = state.reprmserror;
                rep.wrmserror = state.repwrmserror;
                rep.avgerror = state.repavgerror;
                rep.avgrelerror = state.repavgrelerror;
                rep.maxerror = state.repmaxerror;
                rep.iterationscount = state.repiterationscount;
                rep.covpar = new double[state.k, state.k];
                rep.errpar = new double[state.k];
                rep.errcurve = new double[state.npoints];
                rep.noise = new double[state.npoints];
                rep.r2 = state.rep.r2;
                for(i=0; i<=state.k-1; i++)
                {
                    for(j=0; j<=state.k-1; j++)
                    {
                        rep.covpar[i,j] = state.rep.covpar[i,j];
                    }
                    rep.errpar[i] = state.rep.errpar[i];
                }
                for(i=0; i<=state.npoints-1; i++)
                {
                    rep.errcurve[i] = state.rep.errcurve[i];
                    rep.noise[i] = state.rep.noise[i];
                }
            }
        }
예제 #16
0
 public override alglib.apobject make_copy()
 {
     lsfitreport _result = new lsfitreport();
     _result.taskrcond = taskrcond;
     _result.iterationscount = iterationscount;
     _result.varidx = varidx;
     _result.rmserror = rmserror;
     _result.avgerror = avgerror;
     _result.avgrelerror = avgrelerror;
     _result.maxerror = maxerror;
     _result.wrmserror = wrmserror;
     _result.covpar = (double[,])covpar.Clone();
     _result.errpar = (double[])errpar.Clone();
     _result.errcurve = (double[])errcurve.Clone();
     _result.noise = (double[])noise.Clone();
     _result.r2 = r2;
     return _result;
 }
예제 #17
0
        /*************************************************************************
        Internal spline fitting subroutine

          -- ALGLIB PROJECT --
             Copyright 08.09.2009 by Bochkanov Sergey
        *************************************************************************/
        private static void spline1dfitinternal(int st,
            double[] x,
            double[] y,
            double[] w,
            int n,
            double[] xc,
            double[] yc,
            int[] dc,
            int k,
            int m,
            ref int info,
            spline1d.spline1dinterpolant s,
            spline1dfitreport rep)
        {
            double[,] fmatrix = new double[0,0];
            double[,] cmatrix = new double[0,0];
            double[] y2 = new double[0];
            double[] w2 = new double[0];
            double[] sx = new double[0];
            double[] sy = new double[0];
            double[] sd = new double[0];
            double[] tmp = new double[0];
            double[] xoriginal = new double[0];
            double[] yoriginal = new double[0];
            lsfitreport lrep = new lsfitreport();
            double v0 = 0;
            double v1 = 0;
            double v2 = 0;
            double mx = 0;
            spline1d.spline1dinterpolant s2 = new spline1d.spline1dinterpolant();
            int i = 0;
            int j = 0;
            int relcnt = 0;
            double xa = 0;
            double xb = 0;
            double sa = 0;
            double sb = 0;
            double bl = 0;
            double br = 0;
            double decay = 0;
            int i_ = 0;

            x = (double[])x.Clone();
            y = (double[])y.Clone();
            w = (double[])w.Clone();
            xc = (double[])xc.Clone();
            yc = (double[])yc.Clone();
            info = 0;

            alglib.ap.assert(st==0 || st==1, "Spline1DFit: internal error!");
            if( st==0 && m<4 )
            {
                info = -1;
                return;
            }
            if( st==1 && m<4 )
            {
                info = -1;
                return;
            }
            if( (n<1 || k<0) || k>=m )
            {
                info = -1;
                return;
            }
            for(i=0; i<=k-1; i++)
            {
                info = 0;
                if( dc[i]<0 )
                {
                    info = -1;
                }
                if( dc[i]>1 )
                {
                    info = -1;
                }
                if( info<0 )
                {
                    return;
                }
            }
            if( st==1 && m%2!=0 )
            {
                
                //
                // Hermite fitter must have even number of basis functions
                //
                info = -2;
                return;
            }
            
            //
            // weight decay for correct handling of task which becomes
            // degenerate after constraints are applied
            //
            decay = 10000*math.machineepsilon;
            
            //
            // Scale X, Y, XC, YC
            //
            lsfitscalexy(ref x, ref y, ref w, n, ref xc, ref yc, dc, k, ref xa, ref xb, ref sa, ref sb, ref xoriginal, ref yoriginal);
            
            //
            // allocate space, initialize:
            // * SX     -   grid for basis functions
            // * SY     -   values of basis functions at grid points
            // * FMatrix-   values of basis functions at X[]
            // * CMatrix-   values (derivatives) of basis functions at XC[]
            //
            y2 = new double[n+m];
            w2 = new double[n+m];
            fmatrix = new double[n+m, m];
            if( k>0 )
            {
                cmatrix = new double[k, m+1];
            }
            if( st==0 )
            {
                
                //
                // allocate space for cubic spline
                //
                sx = new double[m-2];
                sy = new double[m-2];
                for(j=0; j<=m-2-1; j++)
                {
                    sx[j] = (double)(2*j)/(double)(m-2-1)-1;
                }
            }
            if( st==1 )
            {
                
                //
                // allocate space for Hermite spline
                //
                sx = new double[m/2];
                sy = new double[m/2];
                sd = new double[m/2];
                for(j=0; j<=m/2-1; j++)
                {
                    sx[j] = (double)(2*j)/(double)(m/2-1)-1;
                }
            }
            
            //
            // Prepare design and constraints matrices:
            // * fill constraints matrix
            // * fill first N rows of design matrix with values
            // * fill next M rows of design matrix with regularizing term
            // * append M zeros to Y
            // * append M elements, mean(abs(W)) each, to W
            //
            for(j=0; j<=m-1; j++)
            {
                
                //
                // prepare Jth basis function
                //
                if( st==0 )
                {
                    
                    //
                    // cubic spline basis
                    //
                    for(i=0; i<=m-2-1; i++)
                    {
                        sy[i] = 0;
                    }
                    bl = 0;
                    br = 0;
                    if( j<m-2 )
                    {
                        sy[j] = 1;
                    }
                    if( j==m-2 )
                    {
                        bl = 1;
                    }
                    if( j==m-1 )
                    {
                        br = 1;
                    }
                    spline1d.spline1dbuildcubic(sx, sy, m-2, 1, bl, 1, br, s2);
                }
                if( st==1 )
                {
                    
                    //
                    // Hermite basis
                    //
                    for(i=0; i<=m/2-1; i++)
                    {
                        sy[i] = 0;
                        sd[i] = 0;
                    }
                    if( j%2==0 )
                    {
                        sy[j/2] = 1;
                    }
                    else
                    {
                        sd[j/2] = 1;
                    }
                    spline1d.spline1dbuildhermite(sx, sy, sd, m/2, s2);
                }
                
                //
                // values at X[], XC[]
                //
                for(i=0; i<=n-1; i++)
                {
                    fmatrix[i,j] = spline1d.spline1dcalc(s2, x[i]);
                }
                for(i=0; i<=k-1; i++)
                {
                    alglib.ap.assert(dc[i]>=0 && dc[i]<=2, "Spline1DFit: internal error!");
                    spline1d.spline1ddiff(s2, xc[i], ref v0, ref v1, ref v2);
                    if( dc[i]==0 )
                    {
                        cmatrix[i,j] = v0;
                    }
                    if( dc[i]==1 )
                    {
                        cmatrix[i,j] = v1;
                    }
                    if( dc[i]==2 )
                    {
                        cmatrix[i,j] = v2;
                    }
                }
            }
            for(i=0; i<=k-1; i++)
            {
                cmatrix[i,m] = yc[i];
            }
            for(i=0; i<=m-1; i++)
            {
                for(j=0; j<=m-1; j++)
                {
                    if( i==j )
                    {
                        fmatrix[n+i,j] = decay;
                    }
                    else
                    {
                        fmatrix[n+i,j] = 0;
                    }
                }
            }
            y2 = new double[n+m];
            w2 = new double[n+m];
            for(i_=0; i_<=n-1;i_++)
            {
                y2[i_] = y[i_];
            }
            for(i_=0; i_<=n-1;i_++)
            {
                w2[i_] = w[i_];
            }
            mx = 0;
            for(i=0; i<=n-1; i++)
            {
                mx = mx+Math.Abs(w[i]);
            }
            mx = mx/n;
            for(i=0; i<=m-1; i++)
            {
                y2[n+i] = 0;
                w2[n+i] = mx;
            }
            
            //
            // Solve constrained task
            //
            if( k>0 )
            {
                
                //
                // solve using regularization
                //
                lsfitlinearwc(y2, w2, fmatrix, cmatrix, n+m, m, k, ref info, ref tmp, lrep);
            }
            else
            {
                
                //
                // no constraints, no regularization needed
                //
                lsfitlinearwc(y, w, fmatrix, cmatrix, n, m, k, ref info, ref tmp, lrep);
            }
            if( info<0 )
            {
                return;
            }
            
            //
            // Generate spline and scale it
            //
            if( st==0 )
            {
                
                //
                // cubic spline basis
                //
                for(i_=0; i_<=m-2-1;i_++)
                {
                    sy[i_] = tmp[i_];
                }
                spline1d.spline1dbuildcubic(sx, sy, m-2, 1, tmp[m-2], 1, tmp[m-1], s);
            }
            if( st==1 )
            {
                
                //
                // Hermite basis
                //
                for(i=0; i<=m/2-1; i++)
                {
                    sy[i] = tmp[2*i];
                    sd[i] = tmp[2*i+1];
                }
                spline1d.spline1dbuildhermite(sx, sy, sd, m/2, s);
            }
            spline1d.spline1dlintransx(s, 2/(xb-xa), -((xa+xb)/(xb-xa)));
            spline1d.spline1dlintransy(s, sb-sa, sa);
            
            //
            // Scale absolute errors obtained from LSFitLinearW.
            // Relative error should be calculated separately
            // (because of shifting/scaling of the task)
            //
            rep.taskrcond = lrep.taskrcond;
            rep.rmserror = lrep.rmserror*(sb-sa);
            rep.avgerror = lrep.avgerror*(sb-sa);
            rep.maxerror = lrep.maxerror*(sb-sa);
            rep.avgrelerror = 0;
            relcnt = 0;
            for(i=0; i<=n-1; i++)
            {
                if( (double)(yoriginal[i])!=(double)(0) )
                {
                    rep.avgrelerror = rep.avgrelerror+Math.Abs(spline1d.spline1dcalc(s, xoriginal[i])-yoriginal[i])/Math.Abs(yoriginal[i]);
                    relcnt = relcnt+1;
                }
            }
            if( relcnt!=0 )
            {
                rep.avgrelerror = rep.avgrelerror/relcnt;
            }
        }
예제 #18
0
 public override void init()
 {
     s = new double[0];
     bndl = new double[0];
     bndu = new double[0];
     taskx = new double[0,0];
     tasky = new double[0];
     taskw = new double[0];
     x = new double[0];
     c = new double[0];
     g = new double[0];
     h = new double[0,0];
     wcur = new double[0];
     tmp = new double[0];
     tmpf = new double[0];
     tmpjac = new double[0,0];
     tmpjacw = new double[0,0];
     invrep = new matinv.matinvreport();
     rep = new lsfitreport();
     optstate = new minlm.minlmstate();
     optrep = new minlm.minlmreport();
     rstate = new rcommstate();
 }
예제 #19
0
        /*************************************************************************
        Internal Floater-Hormann fitting subroutine for fixed D
        *************************************************************************/
        private static void barycentricfitwcfixedd(double[] x,
            double[] y,
            double[] w,
            int n,
            double[] xc,
            double[] yc,
            int[] dc,
            int k,
            int m,
            int d,
            ref int info,
            ratint.barycentricinterpolant b,
            barycentricfitreport rep)
        {
            double[,] fmatrix = new double[0,0];
            double[,] cmatrix = new double[0,0];
            double[] y2 = new double[0];
            double[] w2 = new double[0];
            double[] sx = new double[0];
            double[] sy = new double[0];
            double[] sbf = new double[0];
            double[] xoriginal = new double[0];
            double[] yoriginal = new double[0];
            double[] tmp = new double[0];
            lsfitreport lrep = new lsfitreport();
            double v0 = 0;
            double v1 = 0;
            double mx = 0;
            ratint.barycentricinterpolant b2 = new ratint.barycentricinterpolant();
            int i = 0;
            int j = 0;
            int relcnt = 0;
            double xa = 0;
            double xb = 0;
            double sa = 0;
            double sb = 0;
            double decay = 0;
            int i_ = 0;

            x = (double[])x.Clone();
            y = (double[])y.Clone();
            w = (double[])w.Clone();
            xc = (double[])xc.Clone();
            yc = (double[])yc.Clone();
            info = 0;

            if( ((n<1 || m<2) || k<0) || k>=m )
            {
                info = -1;
                return;
            }
            for(i=0; i<=k-1; i++)
            {
                info = 0;
                if( dc[i]<0 )
                {
                    info = -1;
                }
                if( dc[i]>1 )
                {
                    info = -1;
                }
                if( info<0 )
                {
                    return;
                }
            }
            
            //
            // weight decay for correct handling of task which becomes
            // degenerate after constraints are applied
            //
            decay = 10000*math.machineepsilon;
            
            //
            // Scale X, Y, XC, YC
            //
            lsfitscalexy(ref x, ref y, ref w, n, ref xc, ref yc, dc, k, ref xa, ref xb, ref sa, ref sb, ref xoriginal, ref yoriginal);
            
            //
            // allocate space, initialize:
            // * FMatrix-   values of basis functions at X[]
            // * CMatrix-   values (derivatives) of basis functions at XC[]
            //
            y2 = new double[n+m];
            w2 = new double[n+m];
            fmatrix = new double[n+m, m];
            if( k>0 )
            {
                cmatrix = new double[k, m+1];
            }
            y2 = new double[n+m];
            w2 = new double[n+m];
            
            //
            // Prepare design and constraints matrices:
            // * fill constraints matrix
            // * fill first N rows of design matrix with values
            // * fill next M rows of design matrix with regularizing term
            // * append M zeros to Y
            // * append M elements, mean(abs(W)) each, to W
            //
            sx = new double[m];
            sy = new double[m];
            sbf = new double[m];
            for(j=0; j<=m-1; j++)
            {
                sx[j] = (double)(2*j)/(double)(m-1)-1;
            }
            for(i=0; i<=m-1; i++)
            {
                sy[i] = 1;
            }
            ratint.barycentricbuildfloaterhormann(sx, sy, m, d, b2);
            mx = 0;
            for(i=0; i<=n-1; i++)
            {
                barycentriccalcbasis(b2, x[i], ref sbf);
                for(i_=0; i_<=m-1;i_++)
                {
                    fmatrix[i,i_] = sbf[i_];
                }
                y2[i] = y[i];
                w2[i] = w[i];
                mx = mx+Math.Abs(w[i])/n;
            }
            for(i=0; i<=m-1; i++)
            {
                for(j=0; j<=m-1; j++)
                {
                    if( i==j )
                    {
                        fmatrix[n+i,j] = decay;
                    }
                    else
                    {
                        fmatrix[n+i,j] = 0;
                    }
                }
                y2[n+i] = 0;
                w2[n+i] = mx;
            }
            if( k>0 )
            {
                for(j=0; j<=m-1; j++)
                {
                    for(i=0; i<=m-1; i++)
                    {
                        sy[i] = 0;
                    }
                    sy[j] = 1;
                    ratint.barycentricbuildfloaterhormann(sx, sy, m, d, b2);
                    for(i=0; i<=k-1; i++)
                    {
                        alglib.ap.assert(dc[i]>=0 && dc[i]<=1, "BarycentricFit: internal error!");
                        ratint.barycentricdiff1(b2, xc[i], ref v0, ref v1);
                        if( dc[i]==0 )
                        {
                            cmatrix[i,j] = v0;
                        }
                        if( dc[i]==1 )
                        {
                            cmatrix[i,j] = v1;
                        }
                    }
                }
                for(i=0; i<=k-1; i++)
                {
                    cmatrix[i,m] = yc[i];
                }
            }
            
            //
            // Solve constrained task
            //
            if( k>0 )
            {
                
                //
                // solve using regularization
                //
                lsfitlinearwc(y2, w2, fmatrix, cmatrix, n+m, m, k, ref info, ref tmp, lrep);
            }
            else
            {
                
                //
                // no constraints, no regularization needed
                //
                lsfitlinearwc(y, w, fmatrix, cmatrix, n, m, k, ref info, ref tmp, lrep);
            }
            if( info<0 )
            {
                return;
            }
            
            //
            // Generate interpolant and scale it
            //
            for(i_=0; i_<=m-1;i_++)
            {
                sy[i_] = tmp[i_];
            }
            ratint.barycentricbuildfloaterhormann(sx, sy, m, d, b);
            ratint.barycentriclintransx(b, 2/(xb-xa), -((xa+xb)/(xb-xa)));
            ratint.barycentriclintransy(b, sb-sa, sa);
            
            //
            // Scale absolute errors obtained from LSFitLinearW.
            // Relative error should be calculated separately
            // (because of shifting/scaling of the task)
            //
            rep.taskrcond = lrep.taskrcond;
            rep.rmserror = lrep.rmserror*(sb-sa);
            rep.avgerror = lrep.avgerror*(sb-sa);
            rep.maxerror = lrep.maxerror*(sb-sa);
            rep.avgrelerror = 0;
            relcnt = 0;
            for(i=0; i<=n-1; i++)
            {
                if( (double)(yoriginal[i])!=(double)(0) )
                {
                    rep.avgrelerror = rep.avgrelerror+Math.Abs(ratint.barycentriccalc(b, xoriginal[i])-yoriginal[i])/Math.Abs(yoriginal[i]);
                    relcnt = relcnt+1;
                }
            }
            if( relcnt!=0 )
            {
                rep.avgrelerror = rep.avgrelerror/relcnt;
            }
        }
예제 #20
0
        /*************************************************************************
        Weighted  fitting by polynomials in barycentric form, with constraints  on
        function values or first derivatives.

        Small regularizing term is used when solving constrained tasks (to improve
        stability).

        Task is linear, so linear least squares solver is used. Complexity of this
        computational scheme is O(N*M^2), mostly dominated by least squares solver

        SEE ALSO:
            PolynomialFit()

        INPUT PARAMETERS:
            X   -   points, array[0..N-1].
            Y   -   function values, array[0..N-1].
            W   -   weights, array[0..N-1]
                    Each summand in square  sum  of  approximation deviations from
                    given  values  is  multiplied  by  the square of corresponding
                    weight. Fill it by 1's if you don't  want  to  solve  weighted
                    task.
            N   -   number of points, N>0.
                    * if given, only leading N elements of X/Y/W are used
                    * if not given, automatically determined from sizes of X/Y/W
            XC  -   points where polynomial values/derivatives are constrained,
                    array[0..K-1].
            YC  -   values of constraints, array[0..K-1]
            DC  -   array[0..K-1], types of constraints:
                    * DC[i]=0   means that P(XC[i])=YC[i]
                    * DC[i]=1   means that P'(XC[i])=YC[i]
                    SEE BELOW FOR IMPORTANT INFORMATION ON CONSTRAINTS
            K   -   number of constraints, 0<=K<M.
                    K=0 means no constraints (XC/YC/DC are not used in such cases)
            M   -   number of basis functions (= polynomial_degree + 1), M>=1

        OUTPUT PARAMETERS:
            Info-   same format as in LSFitLinearW() subroutine:
                    * Info>0    task is solved
                    * Info<=0   an error occured:
                                -4 means inconvergence of internal SVD
                                -3 means inconsistent constraints
            P   -   interpolant in barycentric form.
            Rep -   report, same format as in LSFitLinearW() subroutine.
                    Following fields are set:
                    * RMSError      rms error on the (X,Y).
                    * AvgError      average error on the (X,Y).
                    * AvgRelError   average relative error on the non-zero Y
                    * MaxError      maximum error
                                    NON-WEIGHTED ERRORS ARE CALCULATED

        IMPORTANT:
            this subroitine doesn't calculate task's condition number for K<>0.

        NOTES:
            you can convert P from barycentric form  to  the  power  or  Chebyshev
            basis with PolynomialBar2Pow() or PolynomialBar2Cheb() functions  from
            POLINT subpackage.

        SETTING CONSTRAINTS - DANGERS AND OPPORTUNITIES:

        Setting constraints can lead  to undesired  results,  like ill-conditioned
        behavior, or inconsistency being detected. From the other side,  it allows
        us to improve quality of the fit. Here we summarize  our  experience  with
        constrained regression splines:
        * even simple constraints can be inconsistent, see  Wikipedia  article  on
          this subject: http://en.wikipedia.org/wiki/Birkhoff_interpolation
        * the  greater  is  M (given  fixed  constraints),  the  more chances that
          constraints will be consistent
        * in the general case, consistency of constraints is NOT GUARANTEED.
        * in the one special cases, however, we can  guarantee  consistency.  This
          case  is:  M>1  and constraints on the function values (NOT DERIVATIVES)

        Our final recommendation is to use constraints  WHEN  AND  ONLY  when  you
        can't solve your task without them. Anything beyond  special  cases  given
        above is not guaranteed and may result in inconsistency.

          -- ALGLIB PROJECT --
             Copyright 10.12.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void polynomialfitwc(double[] x,
            double[] y,
            double[] w,
            int n,
            double[] xc,
            double[] yc,
            int[] dc,
            int k,
            int m,
            ref int info,
            ratint.barycentricinterpolant p,
            polynomialfitreport rep)
        {
            double xa = 0;
            double xb = 0;
            double sa = 0;
            double sb = 0;
            double[] xoriginal = new double[0];
            double[] yoriginal = new double[0];
            double[] y2 = new double[0];
            double[] w2 = new double[0];
            double[] tmp = new double[0];
            double[] tmp2 = new double[0];
            double[] bx = new double[0];
            double[] by = new double[0];
            double[] bw = new double[0];
            int i = 0;
            int j = 0;
            double u = 0;
            double v = 0;
            double s = 0;
            int relcnt = 0;
            lsfitreport lrep = new lsfitreport();

            x = (double[])x.Clone();
            y = (double[])y.Clone();
            w = (double[])w.Clone();
            xc = (double[])xc.Clone();
            yc = (double[])yc.Clone();
            info = 0;

            alglib.ap.assert(n>0, "PolynomialFitWC: N<=0!");
            alglib.ap.assert(m>0, "PolynomialFitWC: M<=0!");
            alglib.ap.assert(k>=0, "PolynomialFitWC: K<0!");
            alglib.ap.assert(k<m, "PolynomialFitWC: K>=M!");
            alglib.ap.assert(alglib.ap.len(x)>=n, "PolynomialFitWC: Length(X)<N!");
            alglib.ap.assert(alglib.ap.len(y)>=n, "PolynomialFitWC: Length(Y)<N!");
            alglib.ap.assert(alglib.ap.len(w)>=n, "PolynomialFitWC: Length(W)<N!");
            alglib.ap.assert(alglib.ap.len(xc)>=k, "PolynomialFitWC: Length(XC)<K!");
            alglib.ap.assert(alglib.ap.len(yc)>=k, "PolynomialFitWC: Length(YC)<K!");
            alglib.ap.assert(alglib.ap.len(dc)>=k, "PolynomialFitWC: Length(DC)<K!");
            alglib.ap.assert(apserv.isfinitevector(x, n), "PolynomialFitWC: X contains infinite or NaN values!");
            alglib.ap.assert(apserv.isfinitevector(y, n), "PolynomialFitWC: Y contains infinite or NaN values!");
            alglib.ap.assert(apserv.isfinitevector(w, n), "PolynomialFitWC: X contains infinite or NaN values!");
            alglib.ap.assert(apserv.isfinitevector(xc, k), "PolynomialFitWC: XC contains infinite or NaN values!");
            alglib.ap.assert(apserv.isfinitevector(yc, k), "PolynomialFitWC: YC contains infinite or NaN values!");
            for(i=0; i<=k-1; i++)
            {
                alglib.ap.assert(dc[i]==0 || dc[i]==1, "PolynomialFitWC: one of DC[] is not 0 or 1!");
            }
            
            //
            // Scale X, Y, XC, YC.
            // Solve scaled problem using internal Chebyshev fitting function.
            //
            lsfitscalexy(ref x, ref y, ref w, n, ref xc, ref yc, dc, k, ref xa, ref xb, ref sa, ref sb, ref xoriginal, ref yoriginal);
            internalchebyshevfit(x, y, w, n, xc, yc, dc, k, m, ref info, ref tmp, lrep);
            if( info<0 )
            {
                return;
            }
            
            //
            // Generate barycentric model and scale it
            // * BX, BY store barycentric model nodes
            // * FMatrix is reused (remember - it is at least MxM, what we need)
            //
            // Model intialization is done in O(M^2). In principle, it can be
            // done in O(M*log(M)), but before it we solved task with O(N*M^2)
            // complexity, so it is only a small amount of total time spent.
            //
            bx = new double[m];
            by = new double[m];
            bw = new double[m];
            tmp2 = new double[m];
            s = 1;
            for(i=0; i<=m-1; i++)
            {
                if( m!=1 )
                {
                    u = Math.Cos(Math.PI*i/(m-1));
                }
                else
                {
                    u = 0;
                }
                v = 0;
                for(j=0; j<=m-1; j++)
                {
                    if( j==0 )
                    {
                        tmp2[j] = 1;
                    }
                    else
                    {
                        if( j==1 )
                        {
                            tmp2[j] = u;
                        }
                        else
                        {
                            tmp2[j] = 2*u*tmp2[j-1]-tmp2[j-2];
                        }
                    }
                    v = v+tmp[j]*tmp2[j];
                }
                bx[i] = u;
                by[i] = v;
                bw[i] = s;
                if( i==0 || i==m-1 )
                {
                    bw[i] = 0.5*bw[i];
                }
                s = -s;
            }
            ratint.barycentricbuildxyw(bx, by, bw, m, p);
            ratint.barycentriclintransx(p, 2/(xb-xa), -((xa+xb)/(xb-xa)));
            ratint.barycentriclintransy(p, sb-sa, sa);
            
            //
            // Scale absolute errors obtained from LSFitLinearW.
            // Relative error should be calculated separately
            // (because of shifting/scaling of the task)
            //
            rep.taskrcond = lrep.taskrcond;
            rep.rmserror = lrep.rmserror*(sb-sa);
            rep.avgerror = lrep.avgerror*(sb-sa);
            rep.maxerror = lrep.maxerror*(sb-sa);
            rep.avgrelerror = 0;
            relcnt = 0;
            for(i=0; i<=n-1; i++)
            {
                if( (double)(yoriginal[i])!=(double)(0) )
                {
                    rep.avgrelerror = rep.avgrelerror+Math.Abs(ratint.barycentriccalc(p, xoriginal[i])-yoriginal[i])/Math.Abs(yoriginal[i]);
                    relcnt = relcnt+1;
                }
            }
            if( relcnt!=0 )
            {
                rep.avgrelerror = rep.avgrelerror/relcnt;
            }
        }
예제 #21
0
        /*************************************************************************
        This internal function estimates covariance matrix and other error-related
        information for linear/nonlinear least squares model.

        It has a bit awkward interface, but it can be used  for  both  linear  and
        nonlinear problems.

        INPUT PARAMETERS:
            F1  -   array[0..N-1,0..K-1]:
                    * for linear problems - matrix of function values
                    * for nonlinear problems - Jacobian matrix
            F0  -   array[0..N-1]:
                    * for linear problems - must be filled with zeros
                    * for nonlinear problems - must store values of function being
                      fitted
            Y   -   array[0..N-1]:
                    * for linear and nonlinear problems - must store target values
            W   -   weights, array[0..N-1]:
                    * for linear and nonlinear problems - weights
            X   -   array[0..K-1]:
                    * for linear and nonlinear problems - current solution
            S   -   array[0..K-1]:
                    * its components should be strictly positive
                    * squared inverse of this diagonal matrix is used as damping
                      factor for covariance matrix (linear and nonlinear problems)
                    * for nonlinear problems, when scale of the variables is usually
                      explicitly given by user, you may use scale vector for this
                      parameter
                    * for linear problems you may set this parameter to
                      S=sqrt(1/diag(F'*F))
                    * this parameter is automatically rescaled by this function,
                      only relative magnitudes of its components (with respect to
                      each other) matter.
            N   -   number of points, N>0.
            K   -   number of dimensions
            Rep -   structure which is used to store results
            Z   -   additional matrix which, depending on ZKind, may contain some
                    information used to accelerate calculations - or just can be
                    temporary buffer:
                    * for ZKind=0       Z contains no information, just temporary
                                        buffer which can be resized and used as needed
                    * for ZKind=1       Z contains triangular matrix from QR
                                        decomposition of W*F1. This matrix can be used
                                        to speedup calculation of covariance matrix.
                                        It should not be changed by algorithm.
            ZKind-  contents of Z

        OUTPUT PARAMETERS:

        * Rep.CovPar        covariance matrix for parameters, array[K,K].
        * Rep.ErrPar        errors in parameters, array[K],
                            errpar = sqrt(diag(CovPar))
        * Rep.ErrCurve      vector of fit errors - standard deviations of empirical
                            best-fit curve from "ideal" best-fit curve built  with
                            infinite number of samples, array[N].
                            errcurve = sqrt(diag(J*CovPar*J')),
                            where J is Jacobian matrix.
        * Rep.Noise         vector of per-point estimates of noise, array[N]
        * Rep.R2            coefficient of determination (non-weighted)

        Other fields of Rep are not changed.

        IMPORTANT:  errors  in  parameters  are  calculated  without  taking  into
                    account boundary/linear constraints! Presence  of  constraints
                    changes distribution of errors, but there is no  easy  way  to
                    account for constraints when you calculate covariance matrix.
                    
        NOTE:       noise in the data is estimated as follows:
                    * for fitting without user-supplied  weights  all  points  are
                      assumed to have same level of noise, which is estimated from
                      the data
                    * for fitting with user-supplied weights we assume that  noise
                      level in I-th point is inversely proportional to Ith weight.
                      Coefficient of proportionality is estimated from the data.
                    
        NOTE:       we apply small amount of regularization when we invert squared
                    Jacobian and calculate covariance matrix. It  guarantees  that
                    algorithm won't divide by zero  during  inversion,  but  skews
                    error estimates a bit (fractional error is about 10^-9).
                    
                    However, we believe that this difference is insignificant  for
                    all practical purposes except for the situation when you  want
                    to compare ALGLIB results with "reference"  implementation  up
                    to the last significant digit.

          -- ALGLIB PROJECT --
             Copyright 10.12.2009 by Bochkanov Sergey
        *************************************************************************/
        private static void estimateerrors(double[,] f1,
            double[] f0,
            double[] y,
            double[] w,
            double[] x,
            double[] s,
            int n,
            int k,
            lsfitreport rep,
            ref double[,] z,
            int zkind)
        {
            int i = 0;
            int j = 0;
            int j1 = 0;
            double v = 0;
            double noisec = 0;
            int info = 0;
            matinv.matinvreport invrep = new matinv.matinvreport();
            int nzcnt = 0;
            double avg = 0;
            double rss = 0;
            double tss = 0;
            double sz = 0;
            double ss = 0;
            int i_ = 0;

            s = (double[])s.Clone();

            
            //
            // Compute NZCnt - count of non-zero weights
            //
            nzcnt = 0;
            for(i=0; i<=n-1; i++)
            {
                if( (double)(w[i])!=(double)(0) )
                {
                    nzcnt = nzcnt+1;
                }
            }
            
            //
            // Compute R2
            //
            if( nzcnt>0 )
            {
                avg = 0.0;
                for(i=0; i<=n-1; i++)
                {
                    if( (double)(w[i])!=(double)(0) )
                    {
                        avg = avg+y[i];
                    }
                }
                avg = avg/nzcnt;
                rss = 0.0;
                tss = 0.0;
                for(i=0; i<=n-1; i++)
                {
                    if( (double)(w[i])!=(double)(0) )
                    {
                        v = 0.0;
                        for(i_=0; i_<=k-1;i_++)
                        {
                            v += f1[i,i_]*x[i_];
                        }
                        v = v+f0[i];
                        rss = rss+math.sqr(v-y[i]);
                        tss = tss+math.sqr(y[i]-avg);
                    }
                }
                if( (double)(tss)!=(double)(0) )
                {
                    rep.r2 = Math.Max(1.0-rss/tss, 0.0);
                }
                else
                {
                    rep.r2 = 1.0;
                }
            }
            else
            {
                rep.r2 = 0;
            }
            
            //
            // Compute estimate of proportionality between noise in the data and weights:
            //     NoiseC = mean(per-point-noise*per-point-weight)
            // Noise level (standard deviation) at each point is equal to NoiseC/W[I].
            //
            if( nzcnt>k )
            {
                noisec = 0.0;
                for(i=0; i<=n-1; i++)
                {
                    if( (double)(w[i])!=(double)(0) )
                    {
                        v = 0.0;
                        for(i_=0; i_<=k-1;i_++)
                        {
                            v += f1[i,i_]*x[i_];
                        }
                        v = v+f0[i];
                        noisec = noisec+math.sqr((v-y[i])*w[i]);
                    }
                }
                noisec = Math.Sqrt(noisec/(nzcnt-k));
            }
            else
            {
                noisec = 0.0;
            }
            
            //
            // Two branches on noise level:
            // * NoiseC>0   normal situation
            // * NoiseC=0   degenerate case CovPar is filled by zeros
            //
            apserv.rmatrixsetlengthatleast(ref rep.covpar, k, k);
            if( (double)(noisec)>(double)(0) )
            {
                
                //
                // Normal situation: non-zero noise level
                //
                alglib.ap.assert(zkind==0 || zkind==1, "LSFit: internal error in EstimateErrors() function");
                if( zkind==0 )
                {
                    
                    //
                    // Z contains no additional information which can be used to speed up
                    // calculations. We have to calculate covariance matrix on our own:
                    // * Compute scaled Jacobian N*J, where N[i,i]=WCur[I]/NoiseC, store in Z
                    // * Compute Z'*Z, store in CovPar
                    // * Apply moderate regularization to CovPar and compute matrix inverse.
                    //   In case inverse failed, increase regularization parameter and try
                    //   again.
                    //
                    apserv.rmatrixsetlengthatleast(ref z, n, k);
                    for(i=0; i<=n-1; i++)
                    {
                        v = w[i]/noisec;
                        for(i_=0; i_<=k-1;i_++)
                        {
                            z[i,i_] = v*f1[i,i_];
                        }
                    }
                    
                    //
                    // Convert S to automatically scaled damped matrix:
                    // * calculate SZ - sum of diagonal elements of Z'*Z
                    // * calculate SS - sum of diagonal elements of S^(-2)
                    // * overwrite S by (SZ/SS)*S^(-2)
                    // * now S has approximately same magnitude as giagonal of Z'*Z
                    //
                    sz = 0;
                    for(i=0; i<=n-1; i++)
                    {
                        for(j=0; j<=k-1; j++)
                        {
                            sz = sz+z[i,j]*z[i,j];
                        }
                    }
                    if( (double)(sz)==(double)(0) )
                    {
                        sz = 1;
                    }
                    ss = 0;
                    for(j=0; j<=k-1; j++)
                    {
                        ss = ss+1/math.sqr(s[j]);
                    }
                    for(j=0; j<=k-1; j++)
                    {
                        s[j] = sz/ss/math.sqr(s[j]);
                    }
                    
                    //
                    // Calculate damped inverse inv(Z'*Z+S).
                    // We increase damping factor V until Z'*Z become well-conditioned.
                    //
                    v = 1.0E3*math.machineepsilon;
                    do
                    {
                        ablas.rmatrixsyrk(k, n, 1.0, z, 0, 0, 2, 0.0, rep.covpar, 0, 0, true);
                        for(i=0; i<=k-1; i++)
                        {
                            rep.covpar[i,i] = rep.covpar[i,i]+v*s[i];
                        }
                        matinv.spdmatrixinverse(ref rep.covpar, k, true, ref info, invrep);
                        v = 10*v;
                    }
                    while( info<=0 );
                    for(i=0; i<=k-1; i++)
                    {
                        for(j=i+1; j<=k-1; j++)
                        {
                            rep.covpar[j,i] = rep.covpar[i,j];
                        }
                    }
                }
                if( zkind==1 )
                {
                    
                    //
                    // We can reuse additional information:
                    // * Z contains R matrix from QR decomposition of W*F1 
                    // * After multiplication by 1/NoiseC we get Z_mod = N*F1, where diag(N)=w[i]/NoiseC
                    // * Such triangular Z_mod is a Cholesky factor from decomposition of J'*N'*N*J.
                    //   Thus, we can calculate covariance matrix as inverse of the matrix given by
                    //   its Cholesky decomposition. It allow us to avoid time-consuming calculation
                    //   of J'*N'*N*J in CovPar - complexity is reduced from O(N*K^2) to O(K^3), which
                    //   is quite good because K is usually orders of magnitude smaller than N.
                    //
                    // First, convert S to automatically scaled damped matrix:
                    // * calculate SZ - sum of magnitudes of diagonal elements of Z/NoiseC
                    // * calculate SS - sum of diagonal elements of S^(-1)
                    // * overwrite S by (SZ/SS)*S^(-1)
                    // * now S has approximately same magnitude as giagonal of Z'*Z
                    //
                    sz = 0;
                    for(j=0; j<=k-1; j++)
                    {
                        sz = sz+Math.Abs(z[j,j]/noisec);
                    }
                    if( (double)(sz)==(double)(0) )
                    {
                        sz = 1;
                    }
                    ss = 0;
                    for(j=0; j<=k-1; j++)
                    {
                        ss = ss+1/s[j];
                    }
                    for(j=0; j<=k-1; j++)
                    {
                        s[j] = sz/ss/s[j];
                    }
                    
                    //
                    // Calculate damped inverse of inv((Z+v*S)'*(Z+v*S))
                    // We increase damping factor V until matrix become well-conditioned.
                    //
                    v = 1.0E3*math.machineepsilon;
                    do
                    {
                        for(i=0; i<=k-1; i++)
                        {
                            for(j=i; j<=k-1; j++)
                            {
                                rep.covpar[i,j] = z[i,j]/noisec;
                            }
                            rep.covpar[i,i] = rep.covpar[i,i]+v*s[i];
                        }
                        matinv.spdmatrixcholeskyinverse(ref rep.covpar, k, true, ref info, invrep);
                        v = 10*v;
                    }
                    while( info<=0 );
                    for(i=0; i<=k-1; i++)
                    {
                        for(j=i+1; j<=k-1; j++)
                        {
                            rep.covpar[j,i] = rep.covpar[i,j];
                        }
                    }
                }
            }
            else
            {
                
                //
                // Degenerate situation: zero noise level, covariance matrix is zero.
                //
                for(i=0; i<=k-1; i++)
                {
                    for(j=0; j<=k-1; j++)
                    {
                        rep.covpar[j,i] = 0;
                    }
                }
            }
            
            //
            // Estimate erorrs in parameters, curve and per-point noise
            //
            apserv.rvectorsetlengthatleast(ref rep.errpar, k);
            apserv.rvectorsetlengthatleast(ref rep.errcurve, n);
            apserv.rvectorsetlengthatleast(ref rep.noise, n);
            for(i=0; i<=k-1; i++)
            {
                rep.errpar[i] = Math.Sqrt(rep.covpar[i,i]);
            }
            for(i=0; i<=n-1; i++)
            {
                
                //
                // ErrCurve[I] is sqrt(P[i,i]) where P=J*CovPar*J'
                //
                v = 0.0;
                for(j=0; j<=k-1; j++)
                {
                    for(j1=0; j1<=k-1; j1++)
                    {
                        v = v+f1[i,j]*rep.covpar[j,j1]*f1[i,j1];
                    }
                }
                rep.errcurve[i] = Math.Sqrt(v);
                
                //
                // Noise[i] is filled using weights and current estimate of noise level
                //
                if( (double)(w[i])!=(double)(0) )
                {
                    rep.noise[i] = noisec/w[i];
                }
                else
                {
                    rep.noise[i] = 0;
                }
            }
        }
예제 #22
0
        /*************************************************************************
        Weighted linear least squares fitting.

        QR decomposition is used to reduce task to MxM, then triangular solver  or
        SVD-based solver is used depending on condition number of the  system.  It
        allows to maximize speed and retain decent accuracy.

        IMPORTANT: if you want to perform  polynomial  fitting,  it  may  be  more
                   convenient to use PolynomialFit() function. This function gives
                   best  results  on  polynomial  problems  and  solves  numerical
                   stability  issues  which  arise  when   you   fit   high-degree
                   polynomials to your data.

        INPUT PARAMETERS:
            Y       -   array[0..N-1] Function values in  N  points.
            W       -   array[0..N-1]  Weights  corresponding to function  values.
                        Each summand in square  sum  of  approximation  deviations
                        from  given  values  is  multiplied  by  the   square   of
                        corresponding weight.
            FMatrix -   a table of basis functions values, array[0..N-1, 0..M-1].
                        FMatrix[I, J] - value of J-th basis function in I-th point.
            N       -   number of points used. N>=1.
            M       -   number of basis functions, M>=1.

        OUTPUT PARAMETERS:
            Info    -   error code:
                        * -4    internal SVD decomposition subroutine failed (very
                                rare and for degenerate systems only)
                        * -1    incorrect N/M were specified
                        *  1    task is solved
            C       -   decomposition coefficients, array[0..M-1]
            Rep     -   fitting report. Following fields are set:
                        * Rep.TaskRCond     reciprocal of condition number
                        * R2                non-adjusted coefficient of determination
                                            (non-weighted)
                        * RMSError          rms error on the (X,Y).
                        * AvgError          average error on the (X,Y).
                        * AvgRelError       average relative error on the non-zero Y
                        * MaxError          maximum error
                                            NON-WEIGHTED ERRORS ARE CALCULATED
                        
        ERRORS IN PARAMETERS                
                        
        This  solver  also  calculates different kinds of errors in parameters and
        fills corresponding fields of report:
        * Rep.CovPar        covariance matrix for parameters, array[K,K].
        * Rep.ErrPar        errors in parameters, array[K],
                            errpar = sqrt(diag(CovPar))
        * Rep.ErrCurve      vector of fit errors - standard deviations of empirical
                            best-fit curve from "ideal" best-fit curve built  with
                            infinite number of samples, array[N].
                            errcurve = sqrt(diag(F*CovPar*F')),
                            where F is functions matrix.
        * Rep.Noise         vector of per-point estimates of noise, array[N]
                    
        NOTE:       noise in the data is estimated as follows:
                    * for fitting without user-supplied  weights  all  points  are
                      assumed to have same level of noise, which is estimated from
                      the data
                    * for fitting with user-supplied weights we assume that  noise
                      level in I-th point is inversely proportional to Ith weight.
                      Coefficient of proportionality is estimated from the data.
                    
        NOTE:       we apply small amount of regularization when we invert squared
                    Jacobian and calculate covariance matrix. It  guarantees  that
                    algorithm won't divide by zero  during  inversion,  but  skews
                    error estimates a bit (fractional error is about 10^-9).
                    
                    However, we believe that this difference is insignificant  for
                    all practical purposes except for the situation when you  want
                    to compare ALGLIB results with "reference"  implementation  up
                    to the last significant digit.
                    
        NOTE:       covariance matrix is estimated using  correction  for  degrees
                    of freedom (covariances are divided by N-M instead of dividing
                    by N).
                                            
          -- ALGLIB --
             Copyright 17.08.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void lsfitlinearw(double[] y,
            double[] w,
            double[,] fmatrix,
            int n,
            int m,
            ref int info,
            ref double[] c,
            lsfitreport rep)
        {
            info = 0;
            c = new double[0];

            alglib.ap.assert(n>=1, "LSFitLinearW: N<1!");
            alglib.ap.assert(m>=1, "LSFitLinearW: M<1!");
            alglib.ap.assert(alglib.ap.len(y)>=n, "LSFitLinearW: length(Y)<N!");
            alglib.ap.assert(apserv.isfinitevector(y, n), "LSFitLinearW: Y contains infinite or NaN values!");
            alglib.ap.assert(alglib.ap.len(w)>=n, "LSFitLinearW: length(W)<N!");
            alglib.ap.assert(apserv.isfinitevector(w, n), "LSFitLinearW: W contains infinite or NaN values!");
            alglib.ap.assert(alglib.ap.rows(fmatrix)>=n, "LSFitLinearW: rows(FMatrix)<N!");
            alglib.ap.assert(alglib.ap.cols(fmatrix)>=m, "LSFitLinearW: cols(FMatrix)<M!");
            alglib.ap.assert(apserv.apservisfinitematrix(fmatrix, n, m), "LSFitLinearW: FMatrix contains infinite or NaN values!");
            lsfitlinearinternal(y, w, fmatrix, n, m, ref info, ref c, rep);
        }
예제 #23
0
        /*************************************************************************
        Weighted linear least squares fitting.

        QR decomposition is used to reduce task to MxM, then triangular solver  or
        SVD-based solver is used depending on condition number of the  system.  It
        allows to maximize speed and retain decent accuracy.

        INPUT PARAMETERS:
            Y       -   array[0..N-1] Function values in  N  points.
            W       -   array[0..N-1]  Weights  corresponding to function  values.
                        Each summand in square  sum  of  approximation  deviations
                        from  given  values  is  multiplied  by  the   square   of
                        corresponding weight.
            FMatrix -   a table of basis functions values, array[0..N-1, 0..M-1].
                        FMatrix[I, J] - value of J-th basis function in I-th point.
            N       -   number of points used. N>=1.
            M       -   number of basis functions, M>=1.

        OUTPUT PARAMETERS:
            Info    -   error code:
                        * -4    internal SVD decomposition subroutine failed (very
                                rare and for degenerate systems only)
                        * -1    incorrect N/M were specified
                        *  1    task is solved
            C       -   decomposition coefficients, array[0..M-1]
            Rep     -   fitting report. Following fields are set:
                        * Rep.TaskRCond     reciprocal of condition number
                        * RMSError          rms error on the (X,Y).
                        * AvgError          average error on the (X,Y).
                        * AvgRelError       average relative error on the non-zero Y
                        * MaxError          maximum error
                                            NON-WEIGHTED ERRORS ARE CALCULATED

        SEE ALSO
            LSFitLinear
            LSFitLinearC
            LSFitLinearWC

          -- ALGLIB --
             Copyright 17.08.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void lsfitlinearw(ref double[] y,
            ref double[] w,
            ref double[,] fmatrix,
            int n,
            int m,
            ref int info,
            ref double[] c,
            ref lsfitreport rep)
        {
            lsfitlinearinternal(ref y, ref w, ref fmatrix, n, m, ref info, ref c, ref rep);
        }
예제 #24
0
        /*************************************************************************
        Weighted constained linear least squares fitting.

        This  is  variation  of LSFitLinearW(), which searchs for min|A*x=b| given
        that  K  additional  constaints  C*x=bc are satisfied. It reduces original
        task to modified one: min|B*y-d| WITHOUT constraints,  then LSFitLinearW()
        is called.

        IMPORTANT: if you want to perform  polynomial  fitting,  it  may  be  more
                   convenient to use PolynomialFit() function. This function gives
                   best  results  on  polynomial  problems  and  solves  numerical
                   stability  issues  which  arise  when   you   fit   high-degree
                   polynomials to your data.

        INPUT PARAMETERS:
            Y       -   array[0..N-1] Function values in  N  points.
            W       -   array[0..N-1]  Weights  corresponding to function  values.
                        Each summand in square  sum  of  approximation  deviations
                        from  given  values  is  multiplied  by  the   square   of
                        corresponding weight.
            FMatrix -   a table of basis functions values, array[0..N-1, 0..M-1].
                        FMatrix[I,J] - value of J-th basis function in I-th point.
            CMatrix -   a table of constaints, array[0..K-1,0..M].
                        I-th row of CMatrix corresponds to I-th linear constraint:
                        CMatrix[I,0]*C[0] + ... + CMatrix[I,M-1]*C[M-1] = CMatrix[I,M]
            N       -   number of points used. N>=1.
            M       -   number of basis functions, M>=1.
            K       -   number of constraints, 0 <= K < M
                        K=0 corresponds to absence of constraints.

        OUTPUT PARAMETERS:
            Info    -   error code:
                        * -4    internal SVD decomposition subroutine failed (very
                                rare and for degenerate systems only)
                        * -3    either   too   many  constraints  (M   or   more),
                                degenerate  constraints   (some   constraints  are
                                repetead twice) or inconsistent  constraints  were
                                specified.
                        *  1    task is solved
            C       -   decomposition coefficients, array[0..M-1]
            Rep     -   fitting report. Following fields are set:
                        * R2                non-adjusted coefficient of determination
                                            (non-weighted)
                        * RMSError          rms error on the (X,Y).
                        * AvgError          average error on the (X,Y).
                        * AvgRelError       average relative error on the non-zero Y
                        * MaxError          maximum error
                                            NON-WEIGHTED ERRORS ARE CALCULATED

        IMPORTANT:
            this subroitine doesn't calculate task's condition number for K<>0.
                        
        ERRORS IN PARAMETERS                
                        
        This  solver  also  calculates different kinds of errors in parameters and
        fills corresponding fields of report:
        * Rep.CovPar        covariance matrix for parameters, array[K,K].
        * Rep.ErrPar        errors in parameters, array[K],
                            errpar = sqrt(diag(CovPar))
        * Rep.ErrCurve      vector of fit errors - standard deviations of empirical
                            best-fit curve from "ideal" best-fit curve built  with
                            infinite number of samples, array[N].
                            errcurve = sqrt(diag(F*CovPar*F')),
                            where F is functions matrix.
        * Rep.Noise         vector of per-point estimates of noise, array[N]

        IMPORTANT:  errors  in  parameters  are  calculated  without  taking  into
                    account boundary/linear constraints! Presence  of  constraints
                    changes distribution of errors, but there is no  easy  way  to
                    account for constraints when you calculate covariance matrix.
                    
        NOTE:       noise in the data is estimated as follows:
                    * for fitting without user-supplied  weights  all  points  are
                      assumed to have same level of noise, which is estimated from
                      the data
                    * for fitting with user-supplied weights we assume that  noise
                      level in I-th point is inversely proportional to Ith weight.
                      Coefficient of proportionality is estimated from the data.
                    
        NOTE:       we apply small amount of regularization when we invert squared
                    Jacobian and calculate covariance matrix. It  guarantees  that
                    algorithm won't divide by zero  during  inversion,  but  skews
                    error estimates a bit (fractional error is about 10^-9).
                    
                    However, we believe that this difference is insignificant  for
                    all practical purposes except for the situation when you  want
                    to compare ALGLIB results with "reference"  implementation  up
                    to the last significant digit.
                    
        NOTE:       covariance matrix is estimated using  correction  for  degrees
                    of freedom (covariances are divided by N-M instead of dividing
                    by N).

          -- ALGLIB --
             Copyright 07.09.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void lsfitlinearwc(double[] y,
            double[] w,
            double[,] fmatrix,
            double[,] cmatrix,
            int n,
            int m,
            int k,
            ref int info,
            ref double[] c,
            lsfitreport rep)
        {
            int i = 0;
            int j = 0;
            double[] tau = new double[0];
            double[,] q = new double[0,0];
            double[,] f2 = new double[0,0];
            double[] tmp = new double[0];
            double[] c0 = new double[0];
            double v = 0;
            int i_ = 0;

            y = (double[])y.Clone();
            cmatrix = (double[,])cmatrix.Clone();
            info = 0;
            c = new double[0];

            alglib.ap.assert(n>=1, "LSFitLinearWC: N<1!");
            alglib.ap.assert(m>=1, "LSFitLinearWC: M<1!");
            alglib.ap.assert(k>=0, "LSFitLinearWC: K<0!");
            alglib.ap.assert(alglib.ap.len(y)>=n, "LSFitLinearWC: length(Y)<N!");
            alglib.ap.assert(apserv.isfinitevector(y, n), "LSFitLinearWC: Y contains infinite or NaN values!");
            alglib.ap.assert(alglib.ap.len(w)>=n, "LSFitLinearWC: length(W)<N!");
            alglib.ap.assert(apserv.isfinitevector(w, n), "LSFitLinearWC: W contains infinite or NaN values!");
            alglib.ap.assert(alglib.ap.rows(fmatrix)>=n, "LSFitLinearWC: rows(FMatrix)<N!");
            alglib.ap.assert(alglib.ap.cols(fmatrix)>=m, "LSFitLinearWC: cols(FMatrix)<M!");
            alglib.ap.assert(apserv.apservisfinitematrix(fmatrix, n, m), "LSFitLinearWC: FMatrix contains infinite or NaN values!");
            alglib.ap.assert(alglib.ap.rows(cmatrix)>=k, "LSFitLinearWC: rows(CMatrix)<K!");
            alglib.ap.assert(alglib.ap.cols(cmatrix)>=m+1 || k==0, "LSFitLinearWC: cols(CMatrix)<M+1!");
            alglib.ap.assert(apserv.apservisfinitematrix(cmatrix, k, m+1), "LSFitLinearWC: CMatrix contains infinite or NaN values!");
            if( k>=m )
            {
                info = -3;
                return;
            }
            
            //
            // Solve
            //
            if( k==0 )
            {
                
                //
                // no constraints
                //
                lsfitlinearinternal(y, w, fmatrix, n, m, ref info, ref c, rep);
            }
            else
            {
                
                //
                // First, find general form solution of constraints system:
                // * factorize C = L*Q
                // * unpack Q
                // * fill upper part of C with zeros (for RCond)
                //
                // We got C=C0+Q2'*y where Q2 is lower M-K rows of Q.
                //
                ortfac.rmatrixlq(ref cmatrix, k, m, ref tau);
                ortfac.rmatrixlqunpackq(cmatrix, k, m, tau, m, ref q);
                for(i=0; i<=k-1; i++)
                {
                    for(j=i+1; j<=m-1; j++)
                    {
                        cmatrix[i,j] = 0.0;
                    }
                }
                if( (double)(rcond.rmatrixlurcondinf(cmatrix, k))<(double)(1000*math.machineepsilon) )
                {
                    info = -3;
                    return;
                }
                tmp = new double[k];
                for(i=0; i<=k-1; i++)
                {
                    if( i>0 )
                    {
                        v = 0.0;
                        for(i_=0; i_<=i-1;i_++)
                        {
                            v += cmatrix[i,i_]*tmp[i_];
                        }
                    }
                    else
                    {
                        v = 0;
                    }
                    tmp[i] = (cmatrix[i,m]-v)/cmatrix[i,i];
                }
                c0 = new double[m];
                for(i=0; i<=m-1; i++)
                {
                    c0[i] = 0;
                }
                for(i=0; i<=k-1; i++)
                {
                    v = tmp[i];
                    for(i_=0; i_<=m-1;i_++)
                    {
                        c0[i_] = c0[i_] + v*q[i,i_];
                    }
                }
                
                //
                // Second, prepare modified matrix F2 = F*Q2' and solve modified task
                //
                tmp = new double[Math.Max(n, m)+1];
                f2 = new double[n, m-k];
                blas.matrixvectormultiply(fmatrix, 0, n-1, 0, m-1, false, c0, 0, m-1, -1.0, ref y, 0, n-1, 1.0);
                blas.matrixmatrixmultiply(fmatrix, 0, n-1, 0, m-1, false, q, k, m-1, 0, m-1, true, 1.0, ref f2, 0, n-1, 0, m-k-1, 0.0, ref tmp);
                lsfitlinearinternal(y, w, f2, n, m-k, ref info, ref tmp, rep);
                rep.taskrcond = -1;
                if( info<=0 )
                {
                    return;
                }
                
                //
                // then, convert back to original answer: C = C0 + Q2'*Y0
                //
                c = new double[m];
                for(i_=0; i_<=m-1;i_++)
                {
                    c[i_] = c0[i_];
                }
                blas.matrixvectormultiply(q, k, m-1, 0, m-1, true, tmp, 0, m-k-1, 1.0, ref c, 0, m-1, 1.0);
            }
        }
예제 #25
0
        /*************************************************************************
        Weighted constained linear least squares fitting.

        This  is  variation  of LSFitLinearW(), which searchs for min|A*x=b| given
        that  K  additional  constaints  C*x=bc are satisfied. It reduces original
        task to modified one: min|B*y-d| WITHOUT constraints,  then LSFitLinearW()
        is called.

        INPUT PARAMETERS:
            Y       -   array[0..N-1] Function values in  N  points.
            W       -   array[0..N-1]  Weights  corresponding to function  values.
                        Each summand in square  sum  of  approximation  deviations
                        from  given  values  is  multiplied  by  the   square   of
                        corresponding weight.
            FMatrix -   a table of basis functions values, array[0..N-1, 0..M-1].
                        FMatrix[I,J] - value of J-th basis function in I-th point.
            CMatrix -   a table of constaints, array[0..K-1,0..M].
                        I-th row of CMatrix corresponds to I-th linear constraint:
                        CMatrix[I,0]*C[0] + ... + CMatrix[I,M-1]*C[M-1] = CMatrix[I,M]
            N       -   number of points used. N>=1.
            M       -   number of basis functions, M>=1.
            K       -   number of constraints, 0 <= K < M
                        K=0 corresponds to absence of constraints.

        OUTPUT PARAMETERS:
            Info    -   error code:
                        * -4    internal SVD decomposition subroutine failed (very
                                rare and for degenerate systems only)
                        * -3    either   too   many  constraints  (M   or   more),
                                degenerate  constraints   (some   constraints  are
                                repetead twice) or inconsistent  constraints  were
                                specified.
                        * -1    incorrect N/M/K were specified
                        *  1    task is solved
            C       -   decomposition coefficients, array[0..M-1]
            Rep     -   fitting report. Following fields are set:
                        * RMSError          rms error on the (X,Y).
                        * AvgError          average error on the (X,Y).
                        * AvgRelError       average relative error on the non-zero Y
                        * MaxError          maximum error
                                            NON-WEIGHTED ERRORS ARE CALCULATED

        IMPORTANT:
            this subroitine doesn't calculate task's condition number for K<>0.

        SEE ALSO
            LSFitLinear
            LSFitLinearC
            LSFitLinearWC

          -- ALGLIB --
             Copyright 07.09.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void lsfitlinearwc(double[] y,
            ref double[] w,
            ref double[,] fmatrix,
            double[,] cmatrix,
            int n,
            int m,
            int k,
            ref int info,
            ref double[] c,
            ref lsfitreport rep)
        {
            int i = 0;
            int j = 0;
            double[] tau = new double[0];
            double[,] q = new double[0,0];
            double[,] f2 = new double[0,0];
            double[] tmp = new double[0];
            double[] c0 = new double[0];
            double v = 0;
            int i_ = 0;

            y = (double[])y.Clone();
            cmatrix = (double[,])cmatrix.Clone();

            if( n<1 | m<1 | k<0 )
            {
                info = -1;
                return;
            }
            if( k>=m )
            {
                info = -3;
                return;
            }
            
            //
            // Solve
            //
            if( k==0 )
            {
                
                //
                // no constraints
                //
                lsfitlinearinternal(ref y, ref w, ref fmatrix, n, m, ref info, ref c, ref rep);
            }
            else
            {
                
                //
                // First, find general form solution of constraints system:
                // * factorize C = L*Q
                // * unpack Q
                // * fill upper part of C with zeros (for RCond)
                //
                // We got C=C0+Q2'*y where Q2 is lower M-K rows of Q.
                //
                ortfac.rmatrixlq(ref cmatrix, k, m, ref tau);
                ortfac.rmatrixlqunpackq(ref cmatrix, k, m, ref tau, m, ref q);
                for(i=0; i<=k-1; i++)
                {
                    for(j=i+1; j<=m-1; j++)
                    {
                        cmatrix[i,j] = 0.0;
                    }
                }
                if( (double)(rcond.rmatrixlurcondinf(ref cmatrix, k))<(double)(1000*AP.Math.MachineEpsilon) )
                {
                    info = -3;
                    return;
                }
                tmp = new double[k];
                for(i=0; i<=k-1; i++)
                {
                    if( i>0 )
                    {
                        v = 0.0;
                        for(i_=0; i_<=i-1;i_++)
                        {
                            v += cmatrix[i,i_]*tmp[i_];
                        }
                    }
                    else
                    {
                        v = 0;
                    }
                    tmp[i] = (cmatrix[i,m]-v)/cmatrix[i,i];
                }
                c0 = new double[m];
                for(i=0; i<=m-1; i++)
                {
                    c0[i] = 0;
                }
                for(i=0; i<=k-1; i++)
                {
                    v = tmp[i];
                    for(i_=0; i_<=m-1;i_++)
                    {
                        c0[i_] = c0[i_] + v*q[i,i_];
                    }
                }
                
                //
                // Second, prepare modified matrix F2 = F*Q2' and solve modified task
                //
                tmp = new double[Math.Max(n, m)+1];
                f2 = new double[n, m-k];
                blas.matrixvectormultiply(ref fmatrix, 0, n-1, 0, m-1, false, ref c0, 0, m-1, -1.0, ref y, 0, n-1, 1.0);
                blas.matrixmatrixmultiply(ref fmatrix, 0, n-1, 0, m-1, false, ref q, k, m-1, 0, m-1, true, 1.0, ref f2, 0, n-1, 0, m-k-1, 0.0, ref tmp);
                lsfitlinearinternal(ref y, ref w, ref f2, n, m-k, ref info, ref tmp, ref rep);
                rep.taskrcond = -1;
                if( info<=0 )
                {
                    return;
                }
                
                //
                // then, convert back to original answer: C = C0 + Q2'*Y0
                //
                c = new double[m];
                for(i_=0; i_<=m-1;i_++)
                {
                    c[i_] = c0[i_];
                }
                blas.matrixvectormultiply(ref q, k, m-1, 0, m-1, true, ref tmp, 0, m-k-1, 1.0, ref c, 0, m-1, 1.0);
            }
        }
예제 #26
0
        /*************************************************************************
        Linear least squares fitting.

        QR decomposition is used to reduce task to MxM, then triangular solver  or
        SVD-based solver is used depending on condition number of the  system.  It
        allows to maximize speed and retain decent accuracy.

        IMPORTANT: if you want to perform  polynomial  fitting,  it  may  be  more
                   convenient to use PolynomialFit() function. This function gives
                   best  results  on  polynomial  problems  and  solves  numerical
                   stability  issues  which  arise  when   you   fit   high-degree
                   polynomials to your data.

        INPUT PARAMETERS:
            Y       -   array[0..N-1] Function values in  N  points.
            FMatrix -   a table of basis functions values, array[0..N-1, 0..M-1].
                        FMatrix[I, J] - value of J-th basis function in I-th point.
            N       -   number of points used. N>=1.
            M       -   number of basis functions, M>=1.

        OUTPUT PARAMETERS:
            Info    -   error code:
                        * -4    internal SVD decomposition subroutine failed (very
                                rare and for degenerate systems only)
                        *  1    task is solved
            C       -   decomposition coefficients, array[0..M-1]
            Rep     -   fitting report. Following fields are set:
                        * Rep.TaskRCond     reciprocal of condition number
                        * R2                non-adjusted coefficient of determination
                                            (non-weighted)
                        * RMSError          rms error on the (X,Y).
                        * AvgError          average error on the (X,Y).
                        * AvgRelError       average relative error on the non-zero Y
                        * MaxError          maximum error
                                            NON-WEIGHTED ERRORS ARE CALCULATED
                        
        ERRORS IN PARAMETERS                
                        
        This  solver  also  calculates different kinds of errors in parameters and
        fills corresponding fields of report:
        * Rep.CovPar        covariance matrix for parameters, array[K,K].
        * Rep.ErrPar        errors in parameters, array[K],
                            errpar = sqrt(diag(CovPar))
        * Rep.ErrCurve      vector of fit errors - standard deviations of empirical
                            best-fit curve from "ideal" best-fit curve built  with
                            infinite number of samples, array[N].
                            errcurve = sqrt(diag(F*CovPar*F')),
                            where F is functions matrix.
        * Rep.Noise         vector of per-point estimates of noise, array[N]
                    
        NOTE:       noise in the data is estimated as follows:
                    * for fitting without user-supplied  weights  all  points  are
                      assumed to have same level of noise, which is estimated from
                      the data
                    * for fitting with user-supplied weights we assume that  noise
                      level in I-th point is inversely proportional to Ith weight.
                      Coefficient of proportionality is estimated from the data.
                    
        NOTE:       we apply small amount of regularization when we invert squared
                    Jacobian and calculate covariance matrix. It  guarantees  that
                    algorithm won't divide by zero  during  inversion,  but  skews
                    error estimates a bit (fractional error is about 10^-9).
                    
                    However, we believe that this difference is insignificant  for
                    all practical purposes except for the situation when you  want
                    to compare ALGLIB results with "reference"  implementation  up
                    to the last significant digit.
                    
        NOTE:       covariance matrix is estimated using  correction  for  degrees
                    of freedom (covariances are divided by N-M instead of dividing
                    by N).

          -- ALGLIB --
             Copyright 17.08.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void lsfitlinear(double[] y,
            double[,] fmatrix,
            int n,
            int m,
            ref int info,
            ref double[] c,
            lsfitreport rep)
        {
            double[] w = new double[0];
            int i = 0;

            info = 0;
            c = new double[0];

            alglib.ap.assert(n>=1, "LSFitLinear: N<1!");
            alglib.ap.assert(m>=1, "LSFitLinear: M<1!");
            alglib.ap.assert(alglib.ap.len(y)>=n, "LSFitLinear: length(Y)<N!");
            alglib.ap.assert(apserv.isfinitevector(y, n), "LSFitLinear: Y contains infinite or NaN values!");
            alglib.ap.assert(alglib.ap.rows(fmatrix)>=n, "LSFitLinear: rows(FMatrix)<N!");
            alglib.ap.assert(alglib.ap.cols(fmatrix)>=m, "LSFitLinear: cols(FMatrix)<M!");
            alglib.ap.assert(apserv.apservisfinitematrix(fmatrix, n, m), "LSFitLinear: FMatrix contains infinite or NaN values!");
            w = new double[n];
            for(i=0; i<=n-1; i++)
            {
                w[i] = 1;
            }
            lsfitlinearinternal(y, w, fmatrix, n, m, ref info, ref c, rep);
        }
예제 #27
0
        /*************************************************************************
        Constained linear least squares fitting, without weights.

        See LSFitLinearWC() for more information.

          -- ALGLIB --
             Copyright 07.09.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void lsfitlinearc(double[] y,
            ref double[,] fmatrix,
            ref double[,] cmatrix,
            int n,
            int m,
            int k,
            ref int info,
            ref double[] c,
            ref lsfitreport rep)
        {
            double[] w = new double[0];
            int i = 0;

            y = (double[])y.Clone();

            if( n<1 )
            {
                info = -1;
                return;
            }
            w = new double[n];
            for(i=0; i<=n-1; i++)
            {
                w[i] = 1;
            }
            lsfitlinearwc(y, ref w, ref fmatrix, cmatrix, n, m, k, ref info, ref c, ref rep);
        }
예제 #28
0
파일: interpolation.cs 프로젝트: Ring-r/opt
    /*************************************************************************
    Constained linear least squares fitting.

    This  is  variation  of LSFitLinear(),  which searchs for min|A*x=b| given
    that  K  additional  constaints  C*x=bc are satisfied. It reduces original
    task to modified one: min|B*y-d| WITHOUT constraints,  then  LSFitLinear()
    is called.

    INPUT PARAMETERS:
        Y       -   array[0..N-1] Function values in  N  points.
        FMatrix -   a table of basis functions values, array[0..N-1, 0..M-1].
                    FMatrix[I,J] - value of J-th basis function in I-th point.
        CMatrix -   a table of constaints, array[0..K-1,0..M].
                    I-th row of CMatrix corresponds to I-th linear constraint:
                    CMatrix[I,0]*C[0] + ... + CMatrix[I,M-1]*C[M-1] = CMatrix[I,M]
        N       -   number of points used. N>=1.
        M       -   number of basis functions, M>=1.
        K       -   number of constraints, 0 <= K < M
                    K=0 corresponds to absence of constraints.

    OUTPUT PARAMETERS:
        Info    -   error code:
                    * -4    internal SVD decomposition subroutine failed (very
                            rare and for degenerate systems only)
                    * -3    either   too   many  constraints  (M   or   more),
                            degenerate  constraints   (some   constraints  are
                            repetead twice) or inconsistent  constraints  were
                            specified.
                    *  1    task is solved
        C       -   decomposition coefficients, array[0..M-1]
        Rep     -   fitting report. Following fields are set:
                    * RMSError          rms error on the (X,Y).
                    * AvgError          average error on the (X,Y).
                    * AvgRelError       average relative error on the non-zero Y
                    * MaxError          maximum error
                                        NON-WEIGHTED ERRORS ARE CALCULATED

    IMPORTANT:
        this subroitine doesn't calculate task's condition number for K<>0.

      -- ALGLIB --
         Copyright 07.09.2009 by Bochkanov Sergey
    *************************************************************************/
    public static void lsfitlinearc(double[] y, double[,] fmatrix, double[,] cmatrix, int n, int m, int k, out int info, out double[] c, out lsfitreport rep)
    {
        info = 0;
        c = new double[0];
        rep = new lsfitreport();
        lsfit.lsfitlinearc(y, fmatrix, cmatrix, n, m, k, ref info, ref c, rep.innerobj);
        return;
    }