/// <summary> /// 对修饰词处理 /// </summary> private void LabelingModifiers(edu.stanford.nlp.ling.IndexedWord word, edu.stanford.nlp.util.CoreMap sentence, Scenario scenario) { if (word == null) { return; } List <(edu.stanford.nlp.ling.IndexedWord, string)> modifiers = word != null?FindTargetIndexWordModifier(sentence, word) : null; string key = word.value(); string value = ""; string relation = ""; //1.根据ner,做最基本判断 foreach (var(modifier, typeName) in modifiers) { switch (typeName) { case "amod": //形容词修饰关系 { value = modifier.value(); relation = "amod"; } break; case "advmod": //副词修饰关系 { //以为 modifier 为核心搜索修饰关系, 如果存在进一步的修饰关系,则此副词为relation relation = "advmod"; edu.stanford.nlp.ling.IndexedWord v = modifier; } break; case "nummod": //额外搜寻修饰单位 { edu.stanford.nlp.ling.IndexedWord unit = FindNumericUnit(sentence, modifier); value = (string)modifier.get(normalizedNamedEntityTagAnnotationClass); relation = "count"; } break; case "compound": //名词短语,连接key { key = key.InsertCompound(modifier.value()); } break; } } //1. 聚类算法,计算 relation-triple 与哪个表格匹配 IScenarioFactor pFactor = scenario.ClusterFactor(relation, key, value); if (pFactor != null) { scenario.MergeValue(relation, key, value, pFactor); } }
/// <summary> /// 谓语本身用途主要是是修饰主语, /// 如果符合要求则构建 : /// relation triple "state (s, t)" /// </summary> /// <param name="scenario"></param> /// <param name="samplingSentence"></param> /// <param name="subject"></param> /// <param name="predicate"></param> private void LabelingPredicate(edu.stanford.nlp.ling.IndexedWord subject, edu.stanford.nlp.ling.IndexedWord predicate, edu.stanford.nlp.ling.IndexedWord objective, edu.stanford.nlp.util.CoreMap samplingSentence, Scenario scenario) { string pos = predicate?.get(partOfSpeechAnnotationClass) as string; string key = "", relation = "", value = ""; switch (pos) { //表示主语的状态和趋势 case "VBD": case "VBG": case "VBN": case "VBP": case "VBZ": { if (objective == null) { key = subject.value(); relation = "state"; value = predicate.value(); } else { key = subject.value(); relation = predicate.value(); value = objective.value(); } } break; default: LabelingModifiers(predicate, samplingSentence, scenario); break; } IScenarioFactor fa = scenario.ClusterFactor(relation, key, value); if (fa != null) { scenario.MergeValue(relation, key, value, fa); } }