public Form_IBCF() { InitializeComponent(); this.comboBox1.Enabled = false; obj_AssStrategy = new cAssStrategy(); this.comboBox2.Items.Clear(); for (int i = 15; i < cReadinData.test_usernum[comboBox1.SelectedIndex]; i++) { this.comboBox2.Items.Add(i); } dataGridView1.RowHeadersVisible = false; // 初始化,最近邻居数量最大为200 obj_ItemBased_CF = new cItemBased_CF(200); for (int i = 1; i <= 1682; i++) { obj_ItemBased_CF.generateItemNN(i); } // 读取最近邻项目及相似值文件,避免重复计算 obj_ItemBased_CF.readFile(); this.comboBox2.SelectedIndex = 0; }
// 运行一次算法 private void button1_Click(object sender, EventArgs e) { // 记录当前时间 DateTime dt_1 = DateTime.Now; this.Rec_Items_num = int.Parse(this.textBox13.Text); // Top-N推荐个数 this.progressBar1.Maximum = this.comboBox2.SelectedIndex + 15 + 22; this.progressBar1.Value = 0; // 读入数据,生成UI矩阵 this.textBox3.Text = "开始读入数据"; this.progressBar1.Value++; Application.DoEvents(); cReadinData obj_ReadData = new cReadinData(comboBox1.SelectedIndex); this.textBox3.Text = "读入数据完成 训练数据:" + obj_ReadData.sTrainFileName[comboBox1.SelectedIndex] + " 测试数据:" + obj_ReadData.testfileName[comboBox1.SelectedIndex]; this.progressBar1.Value++; Application.DoEvents(); int number = int.Parse(textBox2.Text); this.neigh_num = number; // 相似度算法的选择 if (this.radioButton1.Checked) { sim_alg = 1; } else if (this.radioButton2.Checked) { sim_alg = 2; } else if (this.radioButton3.Checked) { sim_alg = 3; } // 测试用户数目,最少为15 testUserNum = this.comboBox2.SelectedIndex + 15; this.textBox3.Text = "初始化最大邻居个数"; // 初始化,最近邻居数量最大为200 obj_ItemBased_CF = new cItemBased_CF(200); this.progressBar1.Value++; Application.DoEvents(); // 初始化相关数据 for (int i = 1; i <= 1682; i++) { this.textBox3.Text = "初始 " + i + " 个项目数据"; if ((i % 100) == 0) { this.progressBar1.Value++; Application.DoEvents(); } Application.DoEvents(); obj_ItemBased_CF.generateItemNN(i); } this.progressBar1.Value++; Application.DoEvents(); this.textBox3.Text = "读取最近邻居及其相似值文件"; obj_ItemBased_CF.readFile(); this.progressBar1.Value++; Application.DoEvents(); // 得到测试用户集合 cUser[] testUsers = cReadinData.getTestUser(); this.textBox3.Text = "读取测试用户集合"; this.progressBar1.Value++; Application.DoEvents(); double MAE, Precison, Recall, F_Measure; double total_MAE = 0, total_Precison = 0, total_Recall = 0, total_F_Measure = 0; double average_MAE, average_Precison, average_Recall, average_F_Measure; // for循环为每个测试用户产生预测评分以及Top-N推荐,并取得算法评价指标 for (int i = 1; i <= testUserNum; i++) { obj_AssStrategy = obj_ItemBased_CF.getPredictRating(testUsers[i], this.sim_alg, neigh_num, Rec_Items_num); MAE = obj_AssStrategy.MAE; Precison = obj_AssStrategy.Precison; Recall = obj_AssStrategy.Recall; F_Measure = obj_AssStrategy.calculateF_Measure(); // 累计各项指标的和 total_MAE += MAE; total_Precison += Precison; total_Recall += Recall; total_F_Measure += F_Measure; this.textBox3.Text = "第" + i.ToString() + "个用户 MAE:" + MAE.ToString() + " 查准率:" + Precison + " 查全率:" + Recall + " F值:" + F_Measure; this.progressBar1.Value++; Application.DoEvents(); } // 计算各项指标的平均值 average_MAE = total_MAE / this.testUserNum; average_Precison = total_Precison / this.testUserNum; average_Recall = total_Recall / this.testUserNum; average_F_Measure = total_F_Measure / this.testUserNum; DateTime dt_2 = DateTime.Now; TimeSpan ts = dt_2.Subtract(dt_1); this.textBox3.Text = "完成 平均MAE:" + average_MAE.ToString() + " 平均查准率:" + average_Precison + " 平均查全率:" + average_Recall + " 平均F值:" + average_F_Measure + " 总耗时:" + ts.TotalMilliseconds + "ms"; Application.DoEvents(); this.textBox4.Text = average_MAE.ToString(); this.textBox5.Text = ts.TotalMilliseconds + "ms"; this.textBox6.Text = this.sSimAlg[this.sim_alg - 1]; this.textBox7.Text = this.neigh_num.ToString(); this.textBox9.Text = average_Precison.ToString(); this.textBox10.Text = average_Recall.ToString(); this.textBox11.Text = average_F_Measure.ToString(); this.textBox12.Text = Rec_Items_num.ToString(); string log = this.sSimAlg[this.sim_alg - 1] + " 邻居数:" + this.neigh_num.ToString() + " 平均MAE:" + average_MAE.ToString() + " 平均查准率:" + average_Precison + " 平均查全率:" + average_Recall + " 平均F值:" + average_F_Measure + " 总耗时:" + ts.TotalMilliseconds + "ms"; this.dataGridView1.Rows.Add(count_dgv++, sSimAlg[sim_alg - 1], this.neigh_num, this.Rec_Items_num, average_MAE, average_Precison, average_Recall, average_F_Measure, (ts.TotalMilliseconds / this.testUserNum) + " ms"); }