public void Report(b2ContactVelocityConstraint[] constraints) { if (m_listener == null) { return; } b2ContactImpulse impulse = b2ContactImpulse.Create(); for (int i = 0; i < m_contactCount; ++i) { b2Contact c = m_contacts[i]; b2ContactVelocityConstraint vc = constraints[i]; impulse.count = vc.pointCount; for (int j = 0; j < vc.pointCount; ++j) { impulse.normalImpulses[j] = vc.points[j].normalImpulse; impulse.tangentImpulses[j] = vc.points[j].tangentImpulse; } m_listener.PostSolve(c, ref impulse); } }
public void StoreImpulses() { for (int i = 0; i < m_count; ++i) { b2ContactVelocityConstraint vc = m_velocityConstraints[i]; b2Manifold manifold = m_contacts[vc.contactIndex].GetManifold(); for (int j = 0; j < vc.pointCount; ++j) { manifold.points[j].normalImpulse = vc.points[j].normalImpulse; manifold.points[j].tangentImpulse = vc.points[j].tangentImpulse; } } }
public void WarmStart() { // Warm start. for (int i = 0; i < m_count; ++i) { b2ContactVelocityConstraint vc = m_velocityConstraints[i]; int indexA = vc.indexA; int indexB = vc.indexB; float mA = vc.invMassA; float iA = vc.invIA; float mB = vc.invMassB; float iB = vc.invIB; int pointCount = vc.pointCount; b2Vec2 vA = m_velocities[indexA].v; float wA = m_velocities[indexA].w; b2Vec2 vB = m_velocities[indexB].v; float wB = m_velocities[indexB].w; b2Vec2 normal = new b2Vec2(vc.normal); b2Vec2 tangent = Utils.b2Cross(normal, 1.0f); for (int j = 0; j < pointCount; ++j) { b2VelocityConstraintPoint vcp = vc.points[j]; b2Vec2 P = vcp.normalImpulse * normal + vcp.tangentImpulse * tangent; wA -= iA * Utils.b2Cross(vcp.rA, P); vA -= mA * P; wB += iB * Utils.b2Cross(vcp.rB, P); vB += mB * P; } m_velocities[indexA].v = vA; m_velocities[indexA].w = wA; m_velocities[indexB].v = vB; m_velocities[indexB].w = wB; } }
public b2ContactSolver(b2ContactSolverDef def) { m_step = def.step; m_count = def.count; m_positionConstraints = Arrays.InitializeWithDefaultInstances <b2ContactPositionConstraint>(m_count); m_velocityConstraints = Arrays.InitializeWithDefaultInstances <b2ContactVelocityConstraint>(m_count); m_positions = def.positions; m_velocities = def.velocities; m_contacts = def.contacts; // Initialize position independent portions of the constraints. for (int i = 0; i < m_count; ++i) { b2Contact contact = m_contacts[i]; b2Fixture fixtureA = contact.m_fixtureA; b2Fixture fixtureB = contact.m_fixtureB; b2Shape shapeA = fixtureA.GetShape(); b2Shape shapeB = fixtureB.GetShape(); float radiusA = shapeA.m_radius; float radiusB = shapeB.m_radius; b2Body bodyA = fixtureA.GetBody(); b2Body bodyB = fixtureB.GetBody(); b2Manifold manifold = contact.GetManifold(); int pointCount = manifold.pointCount; Debug.Assert(pointCount > 0); b2ContactVelocityConstraint vc = m_velocityConstraints[i]; vc.friction = contact.m_friction; vc.restitution = contact.m_restitution; vc.tangentSpeed = contact.m_tangentSpeed; vc.indexA = bodyA.m_islandIndex; vc.indexB = bodyB.m_islandIndex; vc.invMassA = bodyA.m_invMass; vc.invMassB = bodyB.m_invMass; vc.invIA = bodyA.m_invI; vc.invIB = bodyB.m_invI; vc.contactIndex = i; vc.pointCount = pointCount; vc.K.SetZero(); vc.normalMass.SetZero(); b2ContactPositionConstraint pc = m_positionConstraints[i]; pc.indexA = bodyA.m_islandIndex; pc.indexB = bodyB.m_islandIndex; pc.invMassA = bodyA.m_invMass; pc.invMassB = bodyB.m_invMass; pc.localCenterA = bodyA.m_sweep.localCenter; pc.localCenterB = bodyB.m_sweep.localCenter; pc.invIA = bodyA.m_invI; pc.invIB = bodyB.m_invI; pc.localNormal = manifold.localNormal; pc.localPoint = manifold.localPoint; pc.pointCount = pointCount; pc.radiusA = radiusA; pc.radiusB = radiusB; pc.type = manifold.type; for (int j = 0; j < pointCount; ++j) { b2ManifoldPoint cp = manifold.points[j]; b2VelocityConstraintPoint vcp = vc.points[j]; if (m_step.warmStarting) { vcp.normalImpulse = m_step.dtRatio * cp.normalImpulse; vcp.tangentImpulse = m_step.dtRatio * cp.tangentImpulse; } else { vcp.normalImpulse = 0.0f; vcp.tangentImpulse = 0.0f; } vcp.rA.SetZero(); vcp.rB.SetZero(); vcp.normalMass = 0.0f; vcp.tangentMass = 0.0f; vcp.velocityBias = 0.0f; pc.localPoints[j] = cp.localPoint; } } }
public void SolveVelocityConstraints() { for (int i = 0; i < m_count; ++i) { b2ContactVelocityConstraint vc = m_velocityConstraints[i]; int indexA = vc.indexA; int indexB = vc.indexB; float mA = vc.invMassA; float iA = vc.invIA; float mB = vc.invMassB; float iB = vc.invIB; int pointCount = vc.pointCount; b2Vec2 vA = m_velocities[indexA].v; float wA = m_velocities[indexA].w; b2Vec2 vB = m_velocities[indexB].v; float wB = m_velocities[indexB].w; b2Vec2 normal = new b2Vec2(vc.normal); b2Vec2 tangent = Utils.b2Cross(normal, 1.0f); float friction = vc.friction; Debug.Assert(pointCount == 1 || pointCount == 2); // Solve tangent constraints first because non-penetration is more important // than friction. for (int j = 0; j < pointCount; ++j) { b2VelocityConstraintPoint vcp = vc.points[j]; // Relative velocity at contact b2Vec2 dv = vB + Utils.b2Cross(wB, vcp.rB) - vA - Utils.b2Cross(wA, vcp.rA); // Compute tangent force float vt = Utils.b2Dot(dv, tangent) - vc.tangentSpeed; float lambda = vcp.tangentMass * (-vt); // b2Clamp the accumulated force float maxFriction = friction * vcp.normalImpulse; float newImpulse = Utils.b2Clamp(vcp.tangentImpulse + lambda, -maxFriction, maxFriction); lambda = newImpulse - vcp.tangentImpulse; vcp.tangentImpulse = newImpulse; // Apply contact impulse b2Vec2 P = lambda * tangent; vA -= mA * P; wA -= iA * Utils.b2Cross(vcp.rA, P); vB += mB * P; wB += iB * Utils.b2Cross(vcp.rB, P); } // Solve normal constraints if (pointCount == 1 || Utils.g_blockSolve == false) { for (int j = 0; j < pointCount; ++j) { b2VelocityConstraintPoint vcp = vc.points[j]; // Relative velocity at contact b2Vec2 dv = vB + Utils.b2Cross(wB, vcp.rB) - vA - Utils.b2Cross(wA, vcp.rA); // Compute normal impulse float vn = Utils.b2Dot(dv, normal); float lambda = -vcp.normalMass * (vn - vcp.velocityBias); // b2Clamp the accumulated impulse float newImpulse = Utils.b2Max(vcp.normalImpulse + lambda, 0.0f); lambda = newImpulse - vcp.normalImpulse; vcp.normalImpulse = newImpulse; // Apply contact impulse b2Vec2 P = lambda * normal; vA -= mA * P; wA -= iA * Utils.b2Cross(vcp.rA, P); vB += mB * P; wB += iB * Utils.b2Cross(vcp.rB, P); } } else { // Block solver developed in collaboration with Dirk Gregorius (back in 01/07 on Box2D_Lite). // Build the mini LCP for this contact patch // // vn = A * x + b, vn >= 0, x >= 0 and vn_i * x_i = 0 with i = 1..2 // // A = J * W * JT and J = ( -n, -r1 x n, n, r2 x n ) // b = vn0 - velocityBias // // The system is solved using the "Total enumeration method" (s. Murty). The complementary constraint vn_i * x_i // implies that we must have in any solution either vn_i = 0 or x_i = 0. So for the 2D contact problem the cases // vn1 = 0 and vn2 = 0, x1 = 0 and x2 = 0, x1 = 0 and vn2 = 0, x2 = 0 and vn1 = 0 need to be tested. The first valid // solution that satisfies the problem is chosen. // // In order to account of the accumulated impulse 'a' (because of the iterative nature of the solver which only requires // that the accumulated impulse is clamped and not the incremental impulse) we change the impulse variable (x_i). // // Substitute: // // x = a + d // // a := old total impulse // x := new total impulse // d := incremental impulse // // For the current iteration we extend the formula for the incremental impulse // to compute the new total impulse: // // vn = A * d + b // = A * (x - a) + b // = A * x + b - A * a // = A * x + b' // b' = b - A * a; b2VelocityConstraintPoint cp1 = vc.points[0]; b2VelocityConstraintPoint cp2 = vc.points[1]; b2Vec2 a = new b2Vec2(cp1.normalImpulse, cp2.normalImpulse); Debug.Assert(a.x >= 0.0f && a.y >= 0.0f); // Relative velocity at contact b2Vec2 dv1 = vB + Utils.b2Cross(wB, cp1.rB) - vA - Utils.b2Cross(wA, cp1.rA); b2Vec2 dv2 = vB + Utils.b2Cross(wB, cp2.rB) - vA - Utils.b2Cross(wA, cp2.rA); // Compute normal velocity float vn1 = Utils.b2Dot(dv1, normal); float vn2 = Utils.b2Dot(dv2, normal); b2Vec2 b = new b2Vec2(); b.x = vn1 - cp1.velocityBias; b.y = vn2 - cp2.velocityBias; // Compute b' b -= Utils.b2Mul(vc.K, a); //const float k_errorTol = 1e-3f; for (;;) { // // Case 1: vn = 0 // // 0 = A * x + b' // // Solve for x: // // x = - inv(A) * b' // b2Vec2 x = -Utils.b2Mul(vc.normalMass, b); if (x.x >= 0.0f && x.y >= 0.0f) { // Get the incremental impulse b2Vec2 d = x - a; // Apply incremental impulse b2Vec2 P1 = d.x * normal; b2Vec2 P2 = d.y * normal; vA -= mA * (P1 + P2); wA -= iA * (Utils.b2Cross(cp1.rA, P1) + Utils.b2Cross(cp2.rA, P2)); vB += mB * (P1 + P2); wB += iB * (Utils.b2Cross(cp1.rB, P1) + Utils.b2Cross(cp2.rB, P2)); // Accumulate cp1.normalImpulse = x.x; cp2.normalImpulse = x.y; #if B2_DEBUG_SOLVER // Postconditions dv1 = vB + Utils.b2Cross(wB, cp1.rB) - vA - Utils.b2Cross(wA, cp1.rA); dv2 = vB + Utils.b2Cross(wB, cp2.rB) - vA - Utils.b2Cross(wA, cp2.rA); // Compute normal velocity vn1 = Utils.b2Dot(dv1, normal); vn2 = Utils.b2Dot(dv2, normal); Debug.Assert(Utils.b2Abs(vn1 - cp1.velocityBias) < k_errorTol); Debug.Assert(Utils.b2Abs(vn2 - cp2.velocityBias) < k_errorTol); #endif break; } // // Case 2: vn1 = 0 and x2 = 0 // // 0 = a11 * x1 + a12 * 0 + b1' // vn2 = a21 * x1 + a22 * 0 + b2' // x.x = -cp1.normalMass * b.x; x.y = 0.0f; vn1 = 0.0f; vn2 = vc.K.ex.y * x.x + b.y; if (x.x >= 0.0f && vn2 >= 0.0f) { // Get the incremental impulse b2Vec2 d = x - a; // Apply incremental impulse b2Vec2 P1 = d.x * normal; b2Vec2 P2 = d.y * normal; vA -= mA * (P1 + P2); wA -= iA * (Utils.b2Cross(cp1.rA, P1) + Utils.b2Cross(cp2.rA, P2)); vB += mB * (P1 + P2); wB += iB * (Utils.b2Cross(cp1.rB, P1) + Utils.b2Cross(cp2.rB, P2)); // Accumulate cp1.normalImpulse = x.x; cp2.normalImpulse = x.y; #if B2_DEBUG_SOLVER // Postconditions dv1 = vB + Utils.b2Cross(wB, cp1.rB) - vA - Utils.b2Cross(wA, cp1.rA); // Compute normal velocity vn1 = Utils.b2Dot(dv1, normal); Debug.Assert(Utils.b2Abs(vn1 - cp1.velocityBias) < k_errorTol); #endif break; } // // Case 3: vn2 = 0 and x1 = 0 // // vn1 = a11 * 0 + a12 * x2 + b1' // 0 = a21 * 0 + a22 * x2 + b2' // x.x = 0.0f; x.y = -cp2.normalMass * b.y; vn1 = vc.K.ey.x * x.y + b.x; vn2 = 0.0f; if (x.y >= 0.0f && vn1 >= 0.0f) { // Resubstitute for the incremental impulse b2Vec2 d = x - a; // Apply incremental impulse b2Vec2 P1 = d.x * normal; b2Vec2 P2 = d.y * normal; vA -= mA * (P1 + P2); wA -= iA * (Utils.b2Cross(cp1.rA, P1) + Utils.b2Cross(cp2.rA, P2)); vB += mB * (P1 + P2); wB += iB * (Utils.b2Cross(cp1.rB, P1) + Utils.b2Cross(cp2.rB, P2)); // Accumulate cp1.normalImpulse = x.x; cp2.normalImpulse = x.y; #if B2_DEBUG_SOLVER // Postconditions dv2 = vB + Utils.b2Cross(wB, cp2.rB) - vA - Utils.b2Cross(wA, cp2.rA); // Compute normal velocity vn2 = Utils.b2Dot(dv2, normal); Debug.Assert(Utils.b2Abs(vn2 - cp2.velocityBias) < k_errorTol); #endif break; } // // Case 4: x1 = 0 and x2 = 0 // // vn1 = b1 // vn2 = b2; x.x = 0.0f; x.y = 0.0f; vn1 = b.x; vn2 = b.y; if (vn1 >= 0.0f && vn2 >= 0.0f) { // Resubstitute for the incremental impulse b2Vec2 d = x - a; // Apply incremental impulse b2Vec2 P1 = d.x * normal; b2Vec2 P2 = d.y * normal; vA -= mA * (P1 + P2); wA -= iA * (Utils.b2Cross(cp1.rA, P1) + Utils.b2Cross(cp2.rA, P2)); vB += mB * (P1 + P2); wB += iB * (Utils.b2Cross(cp1.rB, P1) + Utils.b2Cross(cp2.rB, P2)); // Accumulate cp1.normalImpulse = x.x; cp2.normalImpulse = x.y; break; } // No solution, give up. This is hit sometimes, but it doesn't seem to matter. break; } } m_velocities[indexA].v = vA; m_velocities[indexA].w = wA; m_velocities[indexB].v = vB; m_velocities[indexB].w = wB; } }
// Initialize position dependent portions of the velocity constraints. public void InitializeVelocityConstraints() { for (int i = 0; i < m_count; ++i) { b2ContactVelocityConstraint vc = m_velocityConstraints[i]; b2ContactPositionConstraint pc = m_positionConstraints[i]; float radiusA = pc.radiusA; float radiusB = pc.radiusB; b2Manifold manifold = m_contacts[vc.contactIndex].GetManifold(); int indexA = vc.indexA; int indexB = vc.indexB; float mA = vc.invMassA; float mB = vc.invMassB; float iA = vc.invIA; float iB = vc.invIB; b2Vec2 localCenterA = new b2Vec2(pc.localCenterA); b2Vec2 localCenterB = new b2Vec2(pc.localCenterB); b2Vec2 cA = m_positions[indexA].c; float aA = m_positions[indexA].a; b2Vec2 vA = m_velocities[indexA].v; float wA = m_velocities[indexA].w; b2Vec2 cB = m_positions[indexB].c; float aB = m_positions[indexB].a; b2Vec2 vB = m_velocities[indexB].v; float wB = m_velocities[indexB].w; Debug.Assert(manifold.pointCount > 0); b2Transform xfA = new b2Transform(); b2Transform xfB = new b2Transform(); xfA.q.Set(aA); xfB.q.Set(aB); xfA.p = cA - Utils.b2Mul(xfA.q, localCenterA); xfB.p = cB - Utils.b2Mul(xfB.q, localCenterB); b2WorldManifold worldManifold = new b2WorldManifold(); worldManifold.Initialize(manifold, xfA, radiusA, xfB, radiusB); vc.normal = worldManifold.normal; int pointCount = vc.pointCount; for (int j = 0; j < pointCount; ++j) { b2VelocityConstraintPoint vcp = vc.points[j]; vcp.rA = worldManifold.points[j] - cA; vcp.rB = worldManifold.points[j] - cB; float rnA = Utils.b2Cross(vcp.rA, vc.normal); float rnB = Utils.b2Cross(vcp.rB, vc.normal); float kNormal = mA + mB + iA * rnA * rnA + iB * rnB * rnB; vcp.normalMass = kNormal > 0.0f ? 1.0f / kNormal : 0.0f; b2Vec2 tangent = Utils.b2Cross(vc.normal, 1.0f); float rtA = Utils.b2Cross(vcp.rA, tangent); float rtB = Utils.b2Cross(vcp.rB, tangent); float kTangent = mA + mB + iA * rtA * rtA + iB * rtB * rtB; vcp.tangentMass = kTangent > 0.0f ? 1.0f / kTangent : 0.0f; // Setup a velocity bias for restitution. vcp.velocityBias = 0.0f; float vRel = Utils.b2Dot(vc.normal, vB + Utils.b2Cross(wB, vcp.rB) - vA - Utils.b2Cross(wA, vcp.rA)); if (vRel < -Settings.b2_velocityThreshold) { vcp.velocityBias = -vc.restitution * vRel; } } // If we have two points, then prepare the block solver. if (vc.pointCount == 2 && Utils.g_blockSolve) { b2VelocityConstraintPoint vcp1 = vc.points[0]; b2VelocityConstraintPoint vcp2 = vc.points[1]; float rn1A = Utils.b2Cross(vcp1.rA, vc.normal); float rn1B = Utils.b2Cross(vcp1.rB, vc.normal); float rn2A = Utils.b2Cross(vcp2.rA, vc.normal); float rn2B = Utils.b2Cross(vcp2.rB, vc.normal); float k11 = mA + mB + iA * rn1A * rn1A + iB * rn1B * rn1B; float k22 = mA + mB + iA * rn2A * rn2A + iB * rn2B * rn2B; float k12 = mA + mB + iA * rn1A * rn2A + iB * rn1B * rn2B; // Ensure a reasonable condition number. const float k_maxConditionNumber = 1000.0f; if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12)) { // K is safe to invert. vc.K.ex.Set(k11, k12); vc.K.ey.Set(k12, k22); vc.normalMass = vc.K.GetInverse(); } else { // The constraints are redundant, just use one. // TODO_ERIN use deepest? vc.pointCount = 1; } } } }