예제 #1
0
        public void NonFlatRates()
        {
            ZeroCurve myZero = new ZeroCurve();

            myZero.Ratepoints = 2;
            myZero.MakeArrays();
            myZero.SetR(0, 0.05, 1.0);
            myZero.SetR(1, 0.075, 2.0);

            //test interpolation priot to point 0
            double tTime = 0.5;
            double val   = myZero.LinInterp(tTime);

            Assert.IsTrue(val > 0.0499999999);
            Assert.IsTrue(val < 0.050000001);

            //test interpolation prior to point 1
            tTime = 1.5;
            val   = myZero.LinInterp(tTime);
            Assert.IsTrue(val > 0.062499999999);
            Assert.IsTrue(val < 0.06250000001);

            //test interpolation post  point 1
            tTime = 2.5;
            val   = myZero.LinInterp(tTime);
            Assert.IsTrue(val > 0.07499999999);
            Assert.IsTrue(val < 0.0750000001);

            //test forward rates

            //test interpolation priot to point 0
            double tl = 0.25;

            tTime = 0.5;
            val   = myZero.ForwardRate(tl, tTime);
            Assert.IsTrue(val > 0.0499999999);
            Assert.IsTrue(val < 0.050000001);

            //test interpolation prior to point 1
            tTime = 1.5;
            val   = myZero.ForwardRate(tl, tTime);
            Assert.IsTrue(val > 0.06499999); /// 0.065
            Assert.IsTrue(val < 0.065000001);

            //test interpolation post  point 1
            tTime = 2.5;
            val   = myZero.ForwardRate(tl, tTime); ///0.077778
            Assert.IsTrue(val > 0.0777777);
            Assert.IsTrue(val < 0.07777778);
        }
예제 #2
0
        //public spotStar
        private void MakeDivArray(ZeroCurve myZero, DivList myDivList)
        {
            double dt = Tau / Gridsteps;

            if ((myDivList != null) && (myZero != null))
            {
                for (int idx = 0; idx < Gridsteps; idx++)
                {
                    double temp = 0.0;
                    for (int kdx = 0; kdx < myDivList.Divpoints; kdx++)
                    {
                        if ((myDivList.GetT(kdx) > idx * dt) && (myDivList.GetT(kdx) < Tau))
                        {
                            temp += myDivList.GetD(kdx) * Math.Exp(-myZero.ForwardRate(idx * dt, myDivList.GetT(kdx)) *
                                                                   (myDivList.GetT(kdx) - idx * dt));
                        }
                    }
                    set_div(idx, temp, dt * idx);
                }
            }
            else //missing either div or zero, load in 0 for _div on tree
            {
                for (int idx = 0; idx <= Gridsteps; idx++)
                {
                    set_div(idx, 0.0, dt * idx);
                }
            }
        }
예제 #3
0
 //compute Sstar for the BC's
 private double ComputeDiscDiv(double tTemp, double T, ZeroCurve myZero, DivList mydiv)
 {
     double temp = 0.0;
     for (int idx = 0; idx < mydiv.Divpoints; idx++)
     {
     if ((tTemp < mydiv.GetT(idx)) && (mydiv.GetT(idx) < T))
     {
         double fwdRate = myZero.ForwardRate(tTemp, mydiv.GetT(idx));
         temp += mydiv.GetD(idx) * Math.Exp(-fwdRate * (mydiv.GetT(idx) - tTemp));
     }
     }
     return temp;
 }
예제 #4
0
        //fill grid forward rates
        private void FillForwardRate(ZeroCurve myZero)
        {
            double dt = Tau / Gridsteps;

            if (myZero != null)
            {
                if (flatFlag)
                {
                    flatRate = myZero.LinInterp(Tau);
                }
                for (int idx = 0; idx < Gridsteps; idx++)
                {
                    SetR(idx, flatFlag ? flatRate : myZero.ForwardRate(idx * dt, (idx + 1) * dt));
                }
            }
        }
예제 #5
0
            /// <summary>
            /// main pricer
            /// </summary>
            /// <param name="myZero"></param>
            /// <param name="myDiv"></param>
            /// <param name="greeks"></param>
            /// <param name="bGreeks"></param>
            /// <returns></returns>
            public double Pricer(ZeroCurve myZero, DivList myDiv, ref double[] greeks, bool bGreeks)
            {

                _x = new List<double>();
                _v = new List<double>();

                double tTemp = T;  //real time
                double tau = 0.0; //backward time

                double dtnom = T / (double) NTsteps;
                double dt = dtnom;
                double tempInt=0.0;

                //start the pricer

                CreateGrid();
                TerminalCondition();

                while( tau < T)
                {
                //set the increment
                double t1 = tTemp - dtnom;
                t1 = (t1 >= 0.0) ? t1 : 0.0;  //make sure t1 >= 0.0
                double divPay = 0.0;
                dt = CheckBetweenDiv(t1, tTemp, ref divPay, myDiv);


                //compute the real time and backward time tau
                tTemp -= dt;
                tau = T - tTemp;    
       
                //compute the increment forward rate
                _domR = myZero.ForwardRate(tTemp, tTemp + dt);
                _forR = 0.0;

                //compute the forward rate from real time tTemp to expiry for the BC'c
                double domRbc = myZero.ForwardRate(tTemp, T);

                //compute discounted dividends for the bc's
                double DiscDiv = ComputeDiscDiv(tTemp, T, myZero, myDiv);

                //save the value at the spot for use in theta calcuation
                int nKeyInt = (int)((Math.Log(Spot) - XL) / _dx);
                double fracInt = (Math.Log(Spot) - _x[nKeyInt]) / (_x[nKeyInt + 1] - _x[nKeyInt]);
                tempInt = _v[nKeyInt] * (1.0 - fracInt) + _v[nKeyInt + 1] * fracInt;


                //get the fwd
                _lnfwd = Math.Log(GetATMfwd(myZero, myDiv, tTemp));

                //build the matrix
                OneStepSetUp(dt, tTemp);

                //compute the q vec
                MakeQVec();

        
                if (SStyle.ToUpper().Equals("E"))
                {
                    // set the exlicit BC
                    _v[0] = MakeLowerBC(tau, Math.Exp(_x[0]), domRbc, DiscDiv);
                    _v[Steps - 1] = MakeUpperBC(tau, Math.Exp(_x[Steps - 1]), domRbc, DiscDiv);
                    SORmethod();

                    //subract from q(1) and q(_steps-2) for explicit BC
                    //'_q[1] -= _SubDiagL[0] * _v[0];
                    //'_q[_msteps - 1] -= _SuperDiagL[_steps - 1] * _v[_steps - 1];

                    //this commented out info is used for the zero curvature condition
                    //_DiagL[1] += 2.0 * _SubDiagL[1];
                    //_SuperDiagL[1] -= _SubDiagL[1];
                    //_DiagL[_steps - 2] += 2.0 * _SuperDiagL[_steps - 2];
                    //_SubDiagL[_steps - 2] -= _SuperDiagL[_steps - 2];

                    //call LU decomp
                    //LUDecomp();
                    //Call the LU sOlver
                    //LUSolution();

                    //for zero curvature
                    //_v[0] = 2.0 * _v[1] - _v[2];
                    //_v[_steps - 1] = 2.0 * _v[_steps - 2] - _v[_steps - 3];
                }
                else
                {
                    _v[0] = MakeLowerBC(tau, Math.Exp(_x[0]), domRbc, DiscDiv);
                    _v[Steps - 1] = MakeUpperBC(tau, Math.Exp(_x[Steps - 1]), domRbc, DiscDiv);       
                    SORmethod();
                }

                //after having incremented back,  apply a grid shift if needed
                if (divPay != 0.0)
                {
                    ApplyGridShift(tau, divPay, domRbc, DiscDiv);
                }

                }

                int nKey = (int) ((Math.Log(Spot) - XL) / _dx);
                double frac = (Math.Log(Spot) - _x[nKey])/ (_x[nKey+1] - _x[nKey]);
                double temp = _v[nKey] * (1.0 - frac) + _v[nKey+1] * frac;

                if (bGreeks)
                {
        
                double[,] a = new double[4, 4];
                double[] b = new double[4];

                a[0,0] = 1.0;
                a[1,0] = 1.0;
                a[2,0] = 1.0;
                a[3,0] = 1.0;

                a[0, 1] = Math.Exp(_x[nKey-1]);
                a[1, 1] = Math.Exp(_x[nKey]);
                a[2, 1] = Math.Exp(_x[nKey +1]);
                a[3, 1] = Math.Exp(_x[nKey +2]);

                a[0, 2] = Math.Exp(_x[nKey - 1]) * Math.Exp(_x[nKey - 1]);
                a[1, 2] = Math.Exp(_x[nKey]) * Math.Exp(_x[nKey]);
                a[2, 2] = Math.Exp(_x[nKey + 1])*Math.Exp(_x[nKey + 1]);
                a[3, 2] = Math.Exp(_x[nKey + 2]) * Math.Exp(_x[nKey + 1]);

                a[0, 3] = Math.Exp(_x[nKey - 1])*Math.Exp(_x[nKey - 1])*Math.Exp(_x[nKey - 1]);
                a[1, 3] = Math.Exp(_x[nKey]) * Math.Exp(_x[nKey]) * Math.Exp(_x[nKey]);
                a[2, 3] = Math.Exp(_x[nKey + 1]) * Math.Exp(_x[nKey + 1]) * Math.Exp(_x[nKey +1]);
                a[3, 3] = Math.Exp(_x[nKey + 2] )* Math.Exp(_x[nKey + 2] )* Math.Exp(_x[nKey + 2]);

                b[0] = _v[nKey-1];
                b[1] = _v[nKey];
                b[2] = _v[nKey+1];
                b[3] = _v[nKey+2];


                int info = NewtonGauss(4, ref a, ref b);

                greeks[0] = b[1] + 2.0 * b[2] * Spot +3.0 * b[3] * Spot * Spot;
                greeks[1] =2.0*b[2] +6.0* b[3] * Spot ;
                greeks[2] = (tempInt - temp) / (365.0 * dt); 

                /*
                nKey = (int)((Math.Log(_spot) * 1.001 - _xl) / _dx);
                frac = (Math.Log(_spot )* 1.001 - _x[nKey]) / (_x[nKey + 1] - _x[nKey]);
                double tempUp = _v[nKey] * (1.0 - frac) + _v[nKey + 1] * frac;

                nKey = (int)((Math.Log(_spot) * 0.999 - _xl) / _dx);
                frac = (Math.Log(_spot) * 0.999 - _x[nKey]) / (_x[nKey + 1] - _x[nKey]);
                double tempDn = _v[nKey] * (1.0 - frac) + _v[nKey + 1] * frac;

                greeks[0] = (tempUp - tempDn) / (0.002 *Math.Log(spot))/spot ;
                greeks[1] = (tempUp + tempDn - 2.0 * temp) / Math.Pow(0.001 * _spot * Math.Log(_spot), 2.0) - greeks[0]/_spot;
                greeks[2] = (tempInt - temp) / (365.0 * dt); 
                    */
        
                }
        

                return temp;
            }