예제 #1
0
            public XDGTestSetup(
                int p,
                double AggregationThreshold,
                int TrackerWidth,
                MultigridOperator.Mode mumo,
                XQuadFactoryHelper.MomentFittingVariants momentFittingVariant,
                ScalarFunction LevSetFunc = null)
            {
                // Level set, tracker and XDG basis
                // ================================

                if (LevSetFunc == null)
                {
                    LevSetFunc = ((_2D)((x, y) => 0.8 * 0.8 - x * x - y * y)).Vectorize();
                }
                LevSet = new LevelSet(new Basis(grid, 2), "LevelSet");
                LevSet.Clear();
                LevSet.ProjectField(LevSetFunc);
                LsTrk = new LevelSetTracker(grid, XQuadFactoryHelper.MomentFittingVariants.Classic, TrackerWidth, new string[] { "A", "B" }, LevSet);
                LsTrk.UpdateTracker();

                XB = new XDGBasis(LsTrk, p);

                XSpatialOperator Dummy = new XSpatialOperator(1, 0, 1, QuadOrderFunc.SumOfMaxDegrees(RoundUp: true), "C1", "u");

                //Dummy.EquationComponents["c1"].Add(new
                Dummy.Commit();

                //Tecplot.PlotFields(new DGField[] { LevSet }, "agglo", 0.0, 3);


                // operator
                // ========

                Debug.Assert(p <= 4);
                XDGBasis opXB = new XDGBasis(LsTrk, 4); // we want to have a very precise quad rule
                var      map  = new UnsetteledCoordinateMapping(opXB);

                int quadOrder = Dummy.QuadOrderFunction(map.BasisS.Select(bs => bs.Degree).ToArray(), new int[0], map.BasisS.Select(bs => bs.Degree).ToArray());

                //agg = new MultiphaseCellAgglomerator(new CutCellMetrics(momentFittingVariant, quadOrder, LsTrk, LsTrk.SpeciesIdS.ToArray()), AggregationThreshold, false);
                agg = LsTrk.GetAgglomerator(LsTrk.SpeciesIdS.ToArray(), quadOrder, __AgglomerationTreshold: AggregationThreshold);


                foreach (var S in LsTrk.SpeciesIdS)
                {
                    Console.WriteLine("Species {0}, no. of agglomerated cells {1} ",
                                      LsTrk.GetSpeciesName(S),
                                      agg.GetAgglomerator(S).AggInfo.SourceCells.Count());
                }

                // mass matrix factory
                // ===================

                // Basis maxB = map.BasisS.ElementAtMax(b => b.Degree);
                //MassFact = new MassMatrixFactory(maxB, agg);
                MassFact = LsTrk.GetXDGSpaceMetrics(LsTrk.SpeciesIdS.ToArray(), quadOrder, 1).MassMatrixFactory;


                // Test field
                // ==========

                // set the test field: this is a polynomial function,
                // but different for each species; On this field, restriction followed by prolongation should be the identity
                this.Xdg_uTest = new XDGField(this.XB, "uTest");
                Dictionary <SpeciesId, double> dumia = new Dictionary <SpeciesId, double>();
                int i = 2;

                foreach (var Spc in LsTrk.SpeciesIdS)
                {
                    dumia.Add(Spc, i);
                    i -= 1;
                }
                SetTestValue(Xdg_uTest, dumia);


                // dummy operator matrix which fits polynomial degree p
                // ====================================================

                Xdg_opMtx = new BlockMsrMatrix(Xdg_uTest.Mapping, Xdg_uTest.Mapping);
                Xdg_opMtx.AccEyeSp(120.0);

                // XDG Aggregation BasiseS
                // =======================

                //XAggB = MgSeq.Select(agGrd => new XdgAggregationBasis[] { new XdgAggregationBasis(uTest.Basis, agGrd) }).ToArray();
                XAggB = new XdgAggregationBasis[MgSeq.Length][];
                var _XAggB = AggregationGridBasis.CreateSequence(MgSeq, Xdg_uTest.Mapping.BasisS);

                for (int iLevel = 0; iLevel < XAggB.Length; iLevel++)
                {
                    XAggB[iLevel] = new[] { (XdgAggregationBasis)(_XAggB[iLevel][0]) };
                    XAggB[iLevel][0].Update(agg);
                }

                // Multigrid Operator
                // ==================



                Xdg_opMtx = new BlockMsrMatrix(Xdg_uTest.Mapping, Xdg_uTest.Mapping);
                Xdg_opMtx.AccEyeSp(120.0);

                XdgMultigridOp = new MultigridOperator(XAggB, Xdg_uTest.Mapping,
                                                       Xdg_opMtx,
                                                       MassFact.GetMassMatrix(Xdg_uTest.Mapping, false),
                                                       new MultigridOperator.ChangeOfBasisConfig[][] {
                    new MultigridOperator.ChangeOfBasisConfig[] {
                        new MultigridOperator.ChangeOfBasisConfig()
                        {
                            VarIndex = new int[] { 0 }, mode = mumo, Degree = p
                        }
                    }
                });
            }
예제 #2
0
        protected override double RunSolverOneStep(int TimestepNo, double phystime, double dt)
        {
            Console.WriteLine("    Timestep # " + TimestepNo + ", phystime = " + phystime);

            //phystime = 1.8;
            LsUpdate(phystime);


            // operator-matrix assemblieren
            MsrMatrix OperatorMatrix = new MsrMatrix(u.Mapping, u.Mapping);

            double[] Affine = new double[OperatorMatrix.RowPartitioning.LocalLength];
            MultiphaseCellAgglomerator Agg;
            MassMatrixFactory          Mfact;

            // Agglomerator setup
            int quadOrder = Op.QuadOrderFunction(new int[] { u.Basis.Degree }, new int[0], new int[] { u.Basis.Degree });

            //Agg = new MultiphaseCellAgglomerator(new CutCellMetrics(MomentFittingVariant, quadOrder, LsTrk, ), this.THRESHOLD, false);
            Agg = LsTrk.GetAgglomerator(new SpeciesId[] { LsTrk.GetSpeciesId("B") }, quadOrder, this.THRESHOLD);

            Console.WriteLine("Inter-Process agglomeration? " + Agg.GetAgglomerator(LsTrk.GetSpeciesId("B")).AggInfo.InterProcessAgglomeration);
            if (this.THRESHOLD > 0.01)
            {
                TestAgglomeration_Extraploation(Agg);
                TestAgglomeration_Projection(quadOrder, Agg);
            }

            // operator matrix assembly
            Op.ComputeMatrixEx(LsTrk,
                               u.Mapping, null, u.Mapping,
                               OperatorMatrix, Affine, false, 0.0, true,
                               Agg.CellLengthScales,
                               LsTrk.GetSpeciesId("B"));
            Agg.ManipulateMatrixAndRHS(OperatorMatrix, Affine, u.Mapping, u.Mapping);

            // mass matrix factory
            Mfact = LsTrk.GetXDGSpaceMetrics(new SpeciesId[] { LsTrk.GetSpeciesId("B") }, quadOrder, 1).MassMatrixFactory;// new MassMatrixFactory(u.Basis, Agg);

            // Mass matrix/Inverse Mass matrix
            //var MassInv = Mfact.GetMassMatrix(u.Mapping, new double[] { 1.0 }, true, LsTrk.GetSpeciesId("B"));
            var Mass = Mfact.GetMassMatrix(u.Mapping, new double[] { 1.0 }, false, LsTrk.GetSpeciesId("B"));

            Agg.ManipulateMatrixAndRHS(Mass, default(double[]), u.Mapping, u.Mapping);
            var MassInv = Mass.InvertBlocks(OnlyDiagonal: true, Subblocks: true, ignoreEmptyBlocks: true, SymmetricalInversion: false);


            // test that operator depends only on B-species values
            double DepTest = LsTrk.Regions.GetSpeciesSubGrid("B").TestMatrixDependency(OperatorMatrix, u.Mapping, u.Mapping);

            Console.WriteLine("Matrix dependency test: " + DepTest);
            Assert.LessOrEqual(DepTest, 0.0);

            // diagnostic output
            Console.WriteLine("Number of Agglomerations (all species): " + Agg.TotalNumberOfAgglomerations);
            Console.WriteLine("Number of Agglomerations (species 'B'): " + Agg.GetAgglomerator(LsTrk.GetSpeciesId("B")).AggInfo.SourceCells.NoOfItemsLocally.MPISum());

            // operator auswerten:
            double[] x = new double[Affine.Length];
            BLAS.daxpy(x.Length, 1.0, Affine, 1, x, 1);
            OperatorMatrix.SpMVpara(1.0, u.CoordinateVector, 1.0, x);
            MassInv.SpMV(1.0, x, 0.0, du_dx.CoordinateVector);
            Agg.GetAgglomerator(LsTrk.GetSpeciesId("B")).Extrapolate(du_dx.Mapping);


            // markieren, wo ueberhaupt A und B sind
            Bmarker.AccConstant(1.0, LsTrk.Regions.GetSpeciesSubGrid("B").VolumeMask);
            Amarker.AccConstant(+1.0, LsTrk.Regions.GetSpeciesSubGrid("A").VolumeMask);
            Xmarker.AccConstant(+1.0, LsTrk.Regions.GetSpeciesSubGrid("X").VolumeMask);

            // compute error
            ERR.Clear();
            ERR.Acc(1.0, du_dx_Exact, LsTrk.Regions.GetSpeciesSubGrid("B").VolumeMask);
            ERR.Acc(-1.0, du_dx, LsTrk.Regions.GetSpeciesSubGrid("B").VolumeMask);
            double L2Err = ERR.L2Norm(LsTrk.Regions.GetSpeciesSubGrid("B").VolumeMask);

            Console.WriteLine("L2 Error: " + L2Err);

            XERR.Clear();
            XERR.GetSpeciesShadowField("B").Acc(1.0, ERR, LsTrk.Regions.GetSpeciesSubGrid("B").VolumeMask);
            double xL2Err = XERR.L2Norm();

            Console.WriteLine("L2 Error (in XDG space): " + xL2Err);



            // check error
            if (this.THRESHOLD > 0.01)
            {
                // without agglomeration, the error in very tiny cut-cells may be large over the whole cell
                // However, the error in the XDG-space should be small under all circumstances
                Assert.LessOrEqual(L2Err, 1.0e-6);
            }
            Assert.LessOrEqual(xL2Err, 1.0e-6);

            bool IsPassed = ((L2Err <= 1.0e-6 || this.THRESHOLD <= 0.01) && xL2Err <= 1.0e-7);

            if (IsPassed)
            {
                Console.WriteLine("Test PASSED");
            }
            else
            {
                Console.WriteLine("Test FAILED: check errors.");
            }

            // return/Ende
            base.NoOfTimesteps = 17;
            //base.NoOfTimesteps = 2;
            dt = 0.3;
            return(dt);
        }