public void CalculateNonZero_Average_Returns_Average() { var samples = new WorkoutSamples(0); var vector = new WorkoutSampleVector(3, WorkoutSampleDataType.Power); vector.AddPoint(1, 2); vector.AddPoint(2, 4); vector.AddPoint(3, 0); IAthlete athlete = new Athlete(); var workoutCalculator = new WorkoutSamplesCalculator(samples, athlete); var average = workoutCalculator.CalculateNonZeroVectorAverage(vector); Assert.Equal(3, average); }
public void CalculateNormalizedPower_With_Under_30_Samples_Returns_Average() { //Initialise(); var samples = new WorkoutSamples(0); var vector = new WorkoutSampleVector(2, WorkoutSampleDataType.Power); vector.AddPoint(1, 2); vector.AddPoint(2, 4); IAthlete athlete = new Athlete(); var workoutCalculator = new WorkoutSamplesCalculator(samples, athlete); var average = workoutCalculator.CalculateVectorNormalizedAverage(vector); Assert.Equal(3, average); }
public void CalculatCadenceClassificatoion_Under_2_Samples_returns_() { var samples = new WorkoutSamples(0); var vector = new WorkoutSampleVector(1, WorkoutSampleDataType.Cadence); vector.AddPoint(1, 2); samples.CadenceVector = vector; IAthlete athlete = new Athlete(); var workoutCalculator = new WorkoutSamplesCalculator(samples, athlete); var classification = workoutCalculator.ClassifyWorkoutCadenceRanges(); Assert.IsType <List <ICadenceRange> >(classification); }