예제 #1
0
        public void CalculateNonZero_Average_Returns_Average()
        {
            var samples = new WorkoutSamples(0);
            var vector  = new WorkoutSampleVector(3, WorkoutSampleDataType.Power);

            vector.AddPoint(1, 2);
            vector.AddPoint(2, 4);
            vector.AddPoint(3, 0);
            IAthlete athlete           = new Athlete();
            var      workoutCalculator = new WorkoutSamplesCalculator(samples, athlete);
            var      average           = workoutCalculator.CalculateNonZeroVectorAverage(vector);

            Assert.Equal(3, average);
        }
예제 #2
0
        public void CalculateNormalizedPower_With_Under_30_Samples_Returns_Average()
        {
            //Initialise();
            var samples = new WorkoutSamples(0);
            var vector  = new WorkoutSampleVector(2, WorkoutSampleDataType.Power);

            vector.AddPoint(1, 2);
            vector.AddPoint(2, 4);
            IAthlete athlete           = new Athlete();
            var      workoutCalculator = new WorkoutSamplesCalculator(samples, athlete);
            var      average           = workoutCalculator.CalculateVectorNormalizedAverage(vector);

            Assert.Equal(3, average);
        }
예제 #3
0
        public void CalculatCadenceClassificatoion_Under_2_Samples_returns_()
        {
            var samples = new WorkoutSamples(0);
            var vector  = new WorkoutSampleVector(1, WorkoutSampleDataType.Cadence);

            vector.AddPoint(1, 2);
            samples.CadenceVector = vector;
            IAthlete athlete           = new Athlete();
            var      workoutCalculator = new WorkoutSamplesCalculator(samples, athlete);
            var      classification    = workoutCalculator.ClassifyWorkoutCadenceRanges();

            Assert.IsType <List <ICadenceRange> >(classification);
        }