public void TokenizeWithSeparators() { string dataPath = GetDataPath("wikipedia-detox-250-line-data.tsv"); var data = TextLoader.CreateReader(Env, ctx => ( label: ctx.LoadBool(0), text: ctx.LoadText(1)), hasHeader: true) .Read(dataPath).AsDynamic; var est = new WordTokenizeEstimator(Env, "text", "words", separators: new[] { ' ', '?', '!', '.', ',' }); var outdata = TakeFilter.Create(Env, est.Fit(data).Transform(data), 4); var savedData = new ChooseColumnsTransform(Env, outdata, "words"); var saver = new TextSaver(Env, new TextSaver.Arguments { Silent = true }); var outputPath = GetOutputPath("Text", "tokenizedWithSeparators.tsv"); using (var ch = Env.Start("save")) { using (var fs = File.Create(outputPath)) DataSaverUtils.SaveDataView(ch, saver, savedData, fs, keepHidden: true); } CheckEquality("Text", "tokenizedWithSeparators.tsv"); Done(); }
public void NgramWorkout() { string sentimentDataPath = GetDataPath("wikipedia-detox-250-line-data.tsv"); var data = TextLoader.CreateReader(Env, ctx => ( label: ctx.LoadBool(0), text: ctx.LoadText(1)), hasHeader: true) .Read(sentimentDataPath); var invalidData = TextLoader.CreateReader(Env, ctx => ( label: ctx.LoadBool(0), text: ctx.LoadFloat(1)), hasHeader: true) .Read(sentimentDataPath); var est = new WordTokenizeEstimator(Env, "text", "text") .Append(new TermEstimator(Env, "text", "terms")) .Append(new NgramEstimator(Env, "terms", "ngrams")) .Append(new NgramHashEstimator(Env, "terms", "ngramshash")); // The following call fails because of the following issue // https://github.com/dotnet/machinelearning/issues/969 // TestEstimatorCore(est, data.AsDynamic, invalidInput: invalidData.AsDynamic); var outputPath = GetOutputPath("Text", "ngrams.tsv"); using (var ch = Env.Start("save")) { var saver = new TextSaver(Env, new TextSaver.Arguments { Silent = true }); IDataView savedData = TakeFilter.Create(Env, est.Fit(data.AsDynamic).Transform(data.AsDynamic), 4); savedData = new ChooseColumnsTransform(Env, savedData, "text", "terms", "ngrams", "ngramshash"); using (var fs = File.Create(outputPath)) DataSaverUtils.SaveDataView(ch, saver, savedData, fs, keepHidden: true); } CheckEquality("Text", "ngrams.tsv"); Done(); }
public void TextTokenizationWorkout() { string sentimentDataPath = GetDataPath("wikipedia-detox-250-line-data.tsv"); var data = TextLoader.CreateReader(Env, ctx => ( label: ctx.LoadBool(0), text: ctx.LoadText(1)), hasHeader: true) .Read(sentimentDataPath); var invalidData = TextLoader.CreateReader(Env, ctx => ( label: ctx.LoadBool(0), text: ctx.LoadFloat(1)), hasHeader: true) .Read(sentimentDataPath); var est = new WordTokenizeEstimator(Env, "text", "words") .Append(new CharacterTokenizeEstimator(Env, "text", "chars")) .Append(new KeyToValueEstimator(Env, "chars")); TestEstimatorCore(est, data.AsDynamic, invalidInput: invalidData.AsDynamic); var outputPath = GetOutputPath("Text", "tokenized.tsv"); using (var ch = Env.Start("save")) { var saver = new TextSaver(Env, new TextSaver.Arguments { Silent = true }); IDataView savedData = TakeFilter.Create(Env, est.Fit(data.AsDynamic).Transform(data.AsDynamic), 4); savedData = new ChooseColumnsTransform(Env, savedData, "text", "words", "chars"); using (var fs = File.Create(outputPath)) DataSaverUtils.SaveDataView(ch, saver, savedData, fs, keepHidden: true); } CheckEquality("Text", "tokenized.tsv"); Done(); }
public void TestOldSavingAndLoading() { var data = new[] { new TestClass() { A = "This is a good sentence.", B = new string[2] { "Much words", "Wow So Cool" } } }; var dataView = ComponentCreation.CreateDataView(Env, data); var pipe = new WordTokenizeEstimator(Env, new[] { new WordTokenizeTransform.ColumnInfo("A", "TokenizeA"), new WordTokenizeTransform.ColumnInfo("B", "TokenizeB"), }); var result = pipe.Fit(dataView).Transform(dataView); var resultRoles = new RoleMappedData(result); using (var ms = new MemoryStream()) { TrainUtils.SaveModel(Env, Env.Start("saving"), ms, null, resultRoles); ms.Position = 0; var loadedView = ModelFileUtils.LoadTransforms(Env, dataView, ms); } }