예제 #1
0
파일: video.cs 프로젝트: openem-team/openem
    /// <summary>
    /// Writes a csv file containing fish species and frame numbers.
    /// </summary>
    /// <param name="count_path">Path to model file.</param>
    /// <param name="out_path">Path to output csv file.</param>
    /// <param name="roi">Region of interest, needed for image dims.</param>
    /// <param name="detections">Detections for each frame.</param>
    /// <param name="scores">Cover and species scores for each detection.</param>
    static void WriteCounts(
        string count_path,
        string out_path,
        Rect roi,
        VectorVectorDetection detections,
        VectorVectorClassification scores)
    {
        // Create and initialize keyframe finder.
        KeyframeFinder finder = new KeyframeFinder();
        ErrorCode      status = finder.Init(count_path, roi[2], roi[3]);

        if (status != ErrorCode.kSuccess)
        {
            throw new Exception("Failed to initialize keyframe finder!");
        }

        // Process keyframe finder.
        VectorInt keyframes = new VectorInt();

        status = finder.Process(scores, detections, keyframes);
        if (status != ErrorCode.kSuccess)
        {
            throw new Exception("Failed to process keyframe finder!");
        }

        // Write the keyframes out.
        using (var csv = new System.IO.StreamWriter(out_path)) {
            csv.WriteLine("id,frame,species_index");
            int id = 0;
            foreach (var i in keyframes)
            {
                Classification c             = scores[i][0];
                float          max_score     = 0.0F;
                int            species_index = 0;
                for (int j = 0; j < c.species.Count; ++j)
                {
                    if (c.species[j] > max_score)
                    {
                        max_score     = c.species[j];
                        species_index = j;
                    }
                }
                var line = string.Format("{0},{1},{2}", id, i, species_index);
                csv.WriteLine(line);
                id++;
            }
        }
    }
예제 #2
0
파일: video.cs 프로젝트: openem-team/openem
    /// <summary>
    /// Writes a new video with bounding boxes around detections.
    /// </summary>
    /// <param name="vid_path">Path to the original video.</param>
    /// <param name="out_path">Path to the output video.</param>
    /// <param name="roi">Region of interest output from FindVideoRoi.</param>
    /// <param name="endpoints">Transform output from FindVideoRoi.</param>
    /// <param name="detections">Detections for each frame.</param>
    /// <param name="scores">Cover and species scores for each detection.</param>
    static void WriteVideo(
        string vid_path,
        string out_path,
        Rect roi,
        PointPair endpoints,
        VectorVectorDetection detections,
        VectorVectorClassification scores)
    {
        // Initialize the video reader.
        VideoReader reader = new VideoReader();
        ErrorCode   status = reader.Init(vid_path);

        if (status != ErrorCode.kSuccess)
        {
            throw new Exception("Failed to read video!");
        }

        // Initialize the video writer.
        VideoWriter writer = new VideoWriter();

        status = writer.Init(
            out_path,
            reader.FrameRate(),
            Codec.kWmv2,
            new PairIntInt(reader.Width(), reader.Height()));
        if (status != ErrorCode.kSuccess)
        {
            throw new Exception("Failed to write video!");
        }

        // Iterate through frames.
        for (int i = 0; i < detections.Count; ++i)
        {
            Image frame = new Image();
            status = reader.GetFrame(frame);
            if (status != ErrorCode.kSuccess)
            {
                throw new Exception("Error retrieving video frame!");
            }
            Color blue  = new Color(); blue[0] = 255; blue[1] = 0; blue[2] = 0;
            Color red   = new Color(); red[0] = 0; red[1] = 0; red[2] = 255;
            Color green = new Color(); green[0] = 0; green[1] = 255; green[2] = 0;
            frame.DrawRect(roi, blue, 1, endpoints);
            for (int j = 0; j < detections[i].Count; ++j)
            {
                Color  det_color = red;
                double clear     = scores[i][j].cover[2];
                double hand      = scores[i][j].cover[1];
                if (j == 0)
                {
                    if (clear > hand)
                    {
                        det_color = green;
                    }
                    else
                    {
                        det_color = red;
                    }
                }
                frame.DrawRect(detections[i][j].location, det_color, 2, endpoints, roi);
            }
            status = writer.AddFrame(frame);
            if (status != ErrorCode.kSuccess)
            {
                throw new Exception("Error adding frame to video!");
            }
        }
    }
예제 #3
0
파일: video.cs 프로젝트: openem-team/openem
    /// <summary>
    /// Finds and classifies detections for all frames in a video.
    /// </summary>
    /// <param name="detect_path">Path to detect model file.</param>
    /// <param name="classify_path">Path to classify model file.</param>
    /// <param name="roi">Region of interest output from FindVideoRoi.</param>
    /// <param name="endpoints">Ruler endpoints output from FindVideoRoi.</param>
    /// <param name="detections">Detections for each frame.</param>
    /// <param name="scores">Cover and species scores for each detection.</param>
    static void DetectAndClassify(
        string detect_path,
        string classify_path,
        string vid_path,
        Rect roi,
        PointPair endpoints,
        out VectorVectorDetection detections,
        out VectorVectorClassification scores)
    {
        // Determined by experimentation with GPU having 8GB memory.
        const int kMaxImg = 32;

        // Initialize the outputs.
        detections = new VectorVectorDetection();
        scores     = new VectorVectorClassification();

        // Create and initialize the detector.
        Detector  detector = new Detector();
        ErrorCode status   = detector.Init(detect_path, 0.5);

        if (status != ErrorCode.kSuccess)
        {
            throw new Exception("Failed to initialize detector!");
        }

        // Create and initialize the classifier.
        Classifier classifier = new Classifier();

        status = classifier.Init(classify_path, 0.5);
        if (status != ErrorCode.kSuccess)
        {
            throw new Exception("Failed to initialize classifier!");
        }

        // Initialize the video reader.
        VideoReader reader = new VideoReader();

        status = reader.Init(vid_path);
        if (status != ErrorCode.kSuccess)
        {
            throw new Exception("Failed to open video!");
        }

        // Iterate through frames.
        bool vid_end = false;

        while (true)
        {
            // Find detections.
            VectorVectorDetection dets = new VectorVectorDetection();
            VectorImage           imgs = new VectorImage();
            for (int i = 0; i < kMaxImg; ++i)
            {
                Image img = new Image();
                status = reader.GetFrame(img);
                if (status != ErrorCode.kSuccess)
                {
                    vid_end = true;
                    break;
                }
                img = openem.Rectify(img, endpoints);
                img = openem.Crop(img, roi);
                imgs.Add(img);
                status = detector.AddImage(img);
                if (status != ErrorCode.kSuccess)
                {
                    throw new Exception("Failed to add frame to detector!");
                }
            }
            status = detector.Process(dets);
            if (status != ErrorCode.kSuccess)
            {
                throw new Exception("Failed to process detector!");
            }
            for (int i = 0; i < dets.Count; ++i)
            {
            }
            detections.AddRange(dets);
            for (int i = 0; i < detections.Count; ++i)
            {
            }

            // Classify detections.
            for (int i = 0; i < dets.Count; ++i)
            {
                VectorClassification score_batch = new VectorClassification();
                for (int j = 0; j < dets[i].Count; ++j)
                {
                    Image det_img = openem.GetDetImage(imgs[i], dets[i][j].location);
                    status = classifier.AddImage(det_img);
                    if (status != ErrorCode.kSuccess)
                    {
                        throw new Exception("Failed to add frame to classifier!");
                    }
                }
                status = classifier.Process(score_batch);
                if (status != ErrorCode.kSuccess)
                {
                    throw new Exception("Failed to process classifier!");
                }
                scores.Add(score_batch);
            }
            if (vid_end)
            {
                break;
            }
        }
    }