예제 #1
0
        public void CanSampleSequence()
        {
            var n   = new Triangular(0.1, 0.3, 0.2);
            var ied = n.Samples();

            GC.KeepAlive(ied.Take(5).ToArray());
        }
예제 #2
0
        public double[] getSamples(int num) // 获取指定个数的样本
        {
            double[] ret     = new double[num];
            int[]    ret_int = new int[num];
            switch (DistributionName)
            {
            case "Normal":
                normalDis.Samples(ret);
                break;

            case "ContinuousUniform":
                continuousUniformDis.Samples(ret);
                break;

            case "Triangular":
                triangularDis.Samples(ret);
                break;

            case "StudentT":
                studentTDis.Samples(ret);
                break;

            case "DiscreteUniform":
                discreteUniform.Samples(ret_int);
                for (int i = 0; i < num; i++)
                {
                    ret[i] = ret_int[i];
                }
                break;
            }
            return(ret);
        }
예제 #3
0
        public void CanSampleSequenceStatic()
        {
            var ied = Triangular.Samples(new Random(0), 2.0, 3.0, 2.5);

            GC.KeepAlive(ied.Take(5).ToArray());
            ied = Triangular.Samples(10.0, 100.0, 30.0);
            GC.KeepAlive(ied.Take(5).ToArray());
        }
예제 #4
0
        public static double[] triangular(double v1, double v2, double v3, int num)
        {
            var t = new Triangular(v1, v2, v3);

            double[] ret = new double[num];
            t.Samples(ret);
            return(ret);
        }
예제 #5
0
        public void Setup()
        {
            // Debug
            // Random rnd = new Random(0); // for repetability
            // Triangular.Samples(rnd, damageJitter, 0.9, 1.1, 1.0);
            Triangular.Samples(damageJitter, 0.9, 1.1, 1.0);

            for (int i = 5000; i < 25000; i += 2500)
            {
                multipliersLarge.Add(i);
            }

            for (int i = 500; i < 3500; i += 500)
            {
                multipliers.Add(i);
            }
        }
예제 #6
0
 public void FailSampleSequenceStatic()
 {
     Assert.That(() => Triangular.Samples(new Random(0), 1.0, -1.0, 0.1).First(), Throws.ArgumentException);
 }
예제 #7
0
        /// <summary>
        /// Run example
        /// </summary>
        /// <a href="https://en.wikipedia.org/wiki/Triangular_distribution">Triangular distribution</a>
        public void Run()
        {
            // 1. Initialize
            var triangular = new Triangular(0, 1, 0.3);

            Console.WriteLine(@"1. Initialize the new instance of the Triangular distribution class with parameters Lower = {0}, Upper = {1}, Mode = {2}", triangular.LowerBound, triangular.UpperBound, triangular.Mode);
            Console.WriteLine();

            // 2. Distributuion properties:
            Console.WriteLine(@"2. {0} distributuion properties:", triangular);

            // Cumulative distribution function
            Console.WriteLine(@"{0} - Сumulative distribution at location '0.3'", triangular.CumulativeDistribution(0.3).ToString(" #0.00000;-#0.00000"));

            // Probability density
            Console.WriteLine(@"{0} - Probability density at location '0.3'", triangular.Density(0.3).ToString(" #0.00000;-#0.00000"));

            // Log probability density
            Console.WriteLine(@"{0} - Log probability density at location '0.3'", triangular.DensityLn(0.3).ToString(" #0.00000;-#0.00000"));

            // Entropy
            Console.WriteLine(@"{0} - Entropy", triangular.Entropy.ToString(" #0.00000;-#0.00000"));

            // Largest element in the domain
            Console.WriteLine(@"{0} - Largest element in the domain", triangular.Maximum.ToString(" #0.00000;-#0.00000"));

            // Smallest element in the domain
            Console.WriteLine(@"{0} - Smallest element in the domain", triangular.Minimum.ToString(" #0.00000;-#0.00000"));

            // Mean
            Console.WriteLine(@"{0} - Mean", triangular.Mean.ToString(" #0.00000;-#0.00000"));

            // Median
            Console.WriteLine(@"{0} - Median", triangular.Median.ToString(" #0.00000;-#0.00000"));

            // Mode
            Console.WriteLine(@"{0} - Mode", triangular.Mode.ToString(" #0.00000;-#0.00000"));

            // Variance
            Console.WriteLine(@"{0} - Variance", triangular.Variance.ToString(" #0.00000;-#0.00000"));

            // Standard deviation
            Console.WriteLine(@"{0} - Standard deviation", triangular.StdDev.ToString(" #0.00000;-#0.00000"));

            // Skewness
            Console.WriteLine(@"{0} - Skewness", triangular.Skewness.ToString(" #0.00000;-#0.00000"));
            Console.WriteLine();

            // 10 samples
            Console.WriteLine(@"3. Generate 10 samples of the Triangular distribution");
            for (var i = 0; i < 10; i++)
            {
                Console.Write(triangular.Sample().ToString("N05") + @" ");
            }

            Console.WriteLine();
            Console.WriteLine();

            // 10000 samples with starting parameters
            Console.WriteLine(@"4. Generate 100000 samples of the Triangular(0, 1, 0.3) distribution and display histogram");
            var data = new double[100000];

            Triangular.Samples(data, 0.0, 1.0, 0.3);
            ConsoleHelper.DisplayHistogram(data);
            Console.WriteLine();

            // 10000 with different parameters
            Console.WriteLine(@"4. Generate 100000 samples of the Triangular(2, 10, 8) distribution and display histogram");
            Triangular.Samples(data, 2.0, 10.0, 8.0);
            ConsoleHelper.DisplayHistogram(data);
        }
예제 #8
0
        public double[] GetSampleData(string distType, double mostLikelyEstimate,
                                      double lowEstimate, double highEstimate)
        {
            if (Iterations > 10000)
            {
                Iterations = 10000;
            }
            if (Iterations <= 2)
            {
                Iterations = 1000;
            }
            if (this.CILevel < 10)
            {
                this.CILevel = 90;
            }
            if (this.CILevel > 99)
            {
                this.CILevel = 99;
            }
            Random rnd = new Random(Random);

            mostLikelyEstimate = Math.Round(mostLikelyEstimate, 4);
            lowEstimate        = Math.Round(lowEstimate, 4);
            highEstimate       = Math.Round(highEstimate, 4);
            var sampledata = new double[Iterations];

            if (distType == Calculator1.RUC_TYPES.triangle.ToString())
            {
                if (lowEstimate >= mostLikelyEstimate || lowEstimate == 0)
                {
                    //arbitrary rules (25%)
                    lowEstimate = mostLikelyEstimate * .75;
                    //no errors: lowEstimate = 0 is often the case
                    //sb.AppendLine(Errors.GetMessage("DATA_BADDISTRIBUTION"));
                }
                if (highEstimate <= mostLikelyEstimate || highEstimate == 0)
                {
                    //arbitrary rules (25%)
                    highEstimate = mostLikelyEstimate * 1.25;
                }
                if (Random != 0)
                {
                    //generate samples of the Triangular(low, high, mode) distribution;
                    Triangular.Samples(rnd, sampledata, lowEstimate, highEstimate, mostLikelyEstimate);
                }
                else
                {
                    //generate samples of the Triangular(low, high, mode) distribution;
                    Triangular.Samples(sampledata, lowEstimate, highEstimate, mostLikelyEstimate);
                }
            }
            else if (distType == Calculator1.RUC_TYPES.normal.ToString())
            {
                //generate samples of the Normal(mean, sd) distribution;
                if (Random != 0)
                {
                    Normal.Samples(rnd, sampledata, lowEstimate, highEstimate);
                }
                else
                {
                    Normal.Samples(sampledata, lowEstimate, highEstimate);
                }
            }
            else if (distType == Calculator1.RUC_TYPES.lognormal.ToString())
            {
                if (Random != 0)
                {
                    LogNormal.Samples(rnd, sampledata, lowEstimate, highEstimate);
                }
                else
                {
                    LogNormal.Samples(sampledata, lowEstimate, highEstimate);
                }
            }
            else if (distType == Calculator1.RUC_TYPES.weibull.ToString())
            {
                if (Random != 0)
                {
                    Weibull.Samples(rnd, sampledata, lowEstimate, highEstimate);
                }
                else
                {
                    Weibull.Samples(sampledata, lowEstimate, highEstimate);
                }
            }
            else if (distType == Calculator1.RUC_TYPES.beta.ToString())
            {
                if (Random != 0)
                {
                    Beta.Samples(rnd, sampledata, lowEstimate, highEstimate);
                }
                else
                {
                    Beta.Samples(sampledata, lowEstimate, highEstimate);
                }
            }
            else if (distType == Calculator1.RUC_TYPES.pareto.ToString())
            {
                if (Random != 0)
                {
                    Pareto.Samples(rnd, sampledata, lowEstimate, highEstimate);
                }
                else
                {
                    Pareto.Samples(sampledata, lowEstimate, highEstimate);
                }
            }
            else if (distType == Calculator1.RUC_TYPES.uniform.ToString())
            {
                var sampleints = new int[Iterations];
                int iLower     = CalculatorHelpers.ConvertStringToInt(lowEstimate.ToString());
                int iUpper     = CalculatorHelpers.ConvertStringToInt(highEstimate.ToString());
                if (Random != 0)
                {
                    DiscreteUniform.Samples(rnd, sampleints, iLower, iUpper);
                }
                else
                {
                    DiscreteUniform.Samples(sampleints, iLower, iUpper);
                }
                for (int i = 0; i < sampleints.Count(); i++)
                {
                    sampledata[i] = sampleints[i];
                }
            }
            else if (distType == Calculator1.RUC_TYPES.bernoulli.ToString())
            {
                var sampleints = new int[Iterations];
                if (Random != 0)
                {
                    Bernoulli.Samples(rnd, sampleints, lowEstimate);
                }
                else
                {
                    Bernoulli.Samples(sampleints, lowEstimate);
                }
                for (int i = 0; i < sampleints.Count(); i++)
                {
                    sampledata[i] = sampleints[i];
                }
            }
            else if (distType == Calculator1.RUC_TYPES.poisson.ToString())
            {
                var sampleints = new int[Iterations];
                if (Random != 0)
                {
                    Poisson.Samples(rnd, sampleints, lowEstimate);
                }
                else
                {
                    Poisson.Samples(sampleints, lowEstimate);
                }
                for (int i = 0; i < sampleints.Count(); i++)
                {
                    sampledata[i] = sampleints[i];
                }
            }
            else if (distType == Calculator1.RUC_TYPES.binomial.ToString())
            {
                var sampleints     = new int[Iterations];
                int iUpperEstimate = CalculatorHelpers.ConvertStringToInt(highEstimate.ToString());
                if (Random != 0)
                {
                    Binomial.Samples(rnd, sampleints, lowEstimate, iUpperEstimate);
                }
                else
                {
                    Binomial.Samples(sampleints, lowEstimate, iUpperEstimate);
                }
                for (int i = 0; i < sampleints.Count(); i++)
                {
                    sampledata[i] = sampleints[i];
                }
            }
            else if (distType == Calculator1.RUC_TYPES.gamma.ToString())
            {
                //generate samples of the Gamma(shape, scale) distribution;
                if (Random != 0)
                {
                    Gamma.Samples(rnd, sampledata, lowEstimate, highEstimate);
                }
                else
                {
                    Gamma.Samples(sampledata, lowEstimate, highEstimate);
                }
            }
            else
            {
                //don't force them to use distribution
            }
            //hold for possible infernet use
            //else if (distType == Calculator1.RUC_TYPES.dirichlet.ToString())
            //{
            //    //generate samples of the Dirichlet(random, alpha) distribution;
            //    Dirichlet.Sample(sampledata, lowEstimate);
            //}
            //else if (distType == Calculator1.RUC_TYPES.wishart.ToString())
            //{
            //    //generate samples of the Wishart(random, degrees of freedom, scale) distribution;
            //    Wishart.Sample(sampledata, lowEstimate, highEstimate);
            //}

            //the mathlibrary supports more than a dozen additional distributions

            return(sampledata);
        }