예제 #1
0
        private AlpsGeneticAlgorithm CreateAlpsGaTspSample()
        {
            AlpsGeneticAlgorithm alpsGa = new AlpsGeneticAlgorithm();

            #region Problem Configuration
            var provider = new TSPLIBTSPInstanceProvider();
            var instance = provider.GetDataDescriptors().Single(x => x.Name == "ch130");
            TravelingSalesmanProblem tspProblem = new TravelingSalesmanProblem();
            tspProblem.Load(provider.LoadData(instance));
            tspProblem.UseDistanceMatrix.Value = true;
            #endregion
            #region Algorithm Configuration
            alpsGa.Name        = "ALPS Genetic Algorithm - TSP";
            alpsGa.Description = "An age-layered population structure genetic algorithm which solves the \"ch130\" traveling salesman problem (imported from TSPLIB)";
            alpsGa.Problem     = tspProblem;
            SamplesUtils.ConfigureAlpsGeneticAlgorithmParameters <GeneralizedRankSelector, MultiPermutationCrossover, InversionManipulator>(alpsGa,
                                                                                                                                            numberOfLayers: 1000,
                                                                                                                                            popSize: 100,
                                                                                                                                            mutationRate: 0.05,
                                                                                                                                            elites: 1,
                                                                                                                                            plusSelection: true,
                                                                                                                                            agingScheme: AgingScheme.Polynomial,
                                                                                                                                            ageGap: 20,
                                                                                                                                            ageInheritance: 1.0,
                                                                                                                                            maxGens: 1000);
            var checkedCrossovers = new[] { typeof(EdgeRecombinationCrossover), typeof(MaximalPreservativeCrossover), typeof(OrderCrossover2) };
            var multiCrossover    = (MultiPermutationCrossover)alpsGa.Crossover;
            var crossovers        = multiCrossover.Operators.Where(c => checkedCrossovers.Any(cc => cc.IsInstanceOfType(c))).ToList();
            foreach (var c in multiCrossover.Operators)
            {
                multiCrossover.Operators.SetItemCheckedState(c, crossovers.Contains(c));
            }
            #endregion
            return(alpsGa);
        }
예제 #2
0
        private TabuSearch CreateTabuSearchTspSample()
        {
            TabuSearch ts = new TabuSearch();

            #region Problem Configuration
            var provider = new TSPLIBTSPInstanceProvider();
            var instance = provider.GetDataDescriptors().Where(x => x.Name == "ch130").Single();
            TravelingSalesmanProblem tspProblem = new TravelingSalesmanProblem();
            tspProblem.Load(provider.LoadData(instance));
            tspProblem.UseDistanceMatrix.Value = true;
            #endregion
            #region Algorithm Configuration
            ts.Name        = "Tabu Search - TSP";
            ts.Description = "A tabu search algorithm that solves the \"ch130\" TSP (imported from TSPLIB)";
            ts.Problem     = tspProblem;

            ts.MaximumIterations.Value = 1000;
            // move generator has to be set first
            var moveGenerator = ts.MoveGeneratorParameter.ValidValues
                                .OfType <StochasticInversionMultiMoveGenerator>()
                                .Single();
            ts.MoveGenerator = moveGenerator;
            var moveEvaluator = ts.MoveEvaluatorParameter.ValidValues
                                .OfType <TSPInversionMoveRoundedEuclideanPathEvaluator>()
                                .Single();
            ts.MoveEvaluator = moveEvaluator;
            var moveMaker = ts.MoveMakerParameter.ValidValues
                            .OfType <InversionMoveMaker>()
                            .Single();
            ts.MoveMaker             = moveMaker;
            ts.SampleSize.Value      = 750;
            ts.Seed.Value            = 0;
            ts.SetSeedRandomly.Value = true;

            var tabuChecker = ts.TabuCheckerParameter.ValidValues
                              .OfType <InversionMoveSoftTabuCriterion>()
                              .Single();
            tabuChecker.UseAspirationCriterion.Value = true;
            ts.TabuChecker = tabuChecker;

            var tabuMaker = ts.TabuMakerParameter.ValidValues
                            .OfType <InversionMoveTabuMaker>()
                            .Single();
            ts.TabuMaker        = tabuMaker;
            ts.TabuTenure.Value = 60;

            #endregion
            ts.Engine = new ParallelEngine.ParallelEngine();
            return(ts);
        }
    private TabuSearch CreateTabuSearchTspSample() {
      TabuSearch ts = new TabuSearch();
      #region Problem Configuration
      var provider = new TSPLIBTSPInstanceProvider();
      var instance = provider.GetDataDescriptors().Where(x => x.Name == "ch130").Single();
      TravelingSalesmanProblem tspProblem = new TravelingSalesmanProblem();
      tspProblem.Load(provider.LoadData(instance));
      tspProblem.UseDistanceMatrix.Value = true;
      #endregion
      #region Algorithm Configuration
      ts.Name = "Tabu Search - TSP";
      ts.Description = "A tabu search algorithm that solves the \"ch130\" TSP (imported from TSPLIB)";
      ts.Problem = tspProblem;

      ts.MaximumIterations.Value = 1000;
      // move generator has to be set first
      var moveGenerator = ts.MoveGeneratorParameter.ValidValues
        .OfType<StochasticInversionMultiMoveGenerator>()
        .Single();
      ts.MoveGenerator = moveGenerator;
      var moveEvaluator = ts.MoveEvaluatorParameter.ValidValues
        .OfType<TSPInversionMoveRoundedEuclideanPathEvaluator>()
        .Single();
      ts.MoveEvaluator = moveEvaluator;
      var moveMaker = ts.MoveMakerParameter.ValidValues
        .OfType<InversionMoveMaker>()
        .Single();
      ts.MoveMaker = moveMaker;
      ts.SampleSize.Value = 750;
      ts.Seed.Value = 0;
      ts.SetSeedRandomly.Value = true;

      var tabuChecker = ts.TabuCheckerParameter.ValidValues
        .OfType<InversionMoveSoftTabuCriterion>()
        .Single();
      tabuChecker.UseAspirationCriterion.Value = true;
      ts.TabuChecker = tabuChecker;

      var tabuMaker = ts.TabuMakerParameter.ValidValues
        .OfType<InversionMoveTabuMaker>()
        .Single();
      ts.TabuMaker = tabuMaker;
      ts.TabuTenure.Value = 60;

      #endregion
      ts.Engine = new ParallelEngine.ParallelEngine();
      return ts;
    }
 private IslandGeneticAlgorithm CreateIslandGaTspSample() {
   IslandGeneticAlgorithm ga = new IslandGeneticAlgorithm();
   #region Problem Configuration
   var provider = new TSPLIBTSPInstanceProvider();
   var instance = provider.GetDataDescriptors().Where(x => x.Name == "ch130").Single();
   TravelingSalesmanProblem tspProblem = new TravelingSalesmanProblem();
   tspProblem.Load(provider.LoadData(instance));
   tspProblem.UseDistanceMatrix.Value = true;
   #endregion
   #region Algorithm Configuration
   ga.Name = "Island Genetic Algorithm - TSP";
   ga.Description = "An island genetic algorithm which solves the \"ch130\" traveling salesman problem (imported from TSPLIB)";
   ga.Problem = tspProblem;
   SamplesUtils.ConfigureIslandGeneticAlgorithmParameters<ProportionalSelector, OrderCrossover2, InversionManipulator,
     UnidirectionalRingMigrator, BestSelector, WorstReplacer>(
     ga, 100, 1, 1000, 0.05, 5, 50, 0.25);
   #endregion
   return ga;
 }
예제 #5
0
        private GeneticAlgorithm CreateGaTspSample()
        {
            GeneticAlgorithm ga = new GeneticAlgorithm();

            #region Problem Configuration
            var provider = new TSPLIBTSPInstanceProvider();
            var instance = provider.GetDataDescriptors().Where(x => x.Name == "ch130").Single();
            TravelingSalesmanProblem tspProblem = new TravelingSalesmanProblem();
            tspProblem.Load(provider.LoadData(instance));
            tspProblem.UseDistanceMatrix.Value = true;
            #endregion
            #region Algorithm Configuration
            ga.Name        = "Genetic Algorithm - TSP";
            ga.Description = "A genetic algorithm which solves the \"ch130\" traveling salesman problem (imported from TSPLIB)";
            ga.Problem     = tspProblem;
            SamplesUtils.ConfigureGeneticAlgorithmParameters <ProportionalSelector, OrderCrossover2, InversionManipulator>(
                ga, 100, 1, 1000, 0.05);
            #endregion

            return(ga);
        }
예제 #6
0
 private AlpsGeneticAlgorithm CreateAlpsGaTspSample() {
   AlpsGeneticAlgorithm alpsGa = new AlpsGeneticAlgorithm();
   #region Problem Configuration
   var provider = new TSPLIBTSPInstanceProvider();
   var instance = provider.GetDataDescriptors().Single(x => x.Name == "ch130");
   TravelingSalesmanProblem tspProblem = new TravelingSalesmanProblem();
   tspProblem.Load(provider.LoadData(instance));
   tspProblem.UseDistanceMatrix.Value = true;
   #endregion
   #region Algorithm Configuration
   alpsGa.Name = "ALPS Genetic Algorithm - TSP";
   alpsGa.Description = "An age-layered population structure genetic algorithm which solves the \"ch130\" traveling salesman problem (imported from TSPLIB)";
   alpsGa.Problem = tspProblem;
   SamplesUtils.ConfigureAlpsGeneticAlgorithmParameters<GeneralizedRankSelector, MultiPermutationCrossover, InversionManipulator>(alpsGa,
     numberOfLayers: 1000,
     popSize: 100,
     mutationRate: 0.05,
     elites: 1,
     plusSelection: true,
     agingScheme: AgingScheme.Polynomial,
     ageGap: 20,
     ageInheritance: 1.0,
     maxGens: 1000);
   var checkedCrossovers = new[] { typeof(EdgeRecombinationCrossover), typeof(MaximalPreservativeCrossover), typeof(OrderCrossover2) };
   var multiCrossover = (MultiPermutationCrossover)alpsGa.Crossover;
   var crossovers = multiCrossover.Operators.Where(c => checkedCrossovers.Any(cc => cc.IsInstanceOfType(c))).ToList();
   foreach (var c in multiCrossover.Operators)
     multiCrossover.Operators.SetItemCheckedState(c, crossovers.Contains(c));
   #endregion
   return alpsGa;
 }