/// <summary>
 /// Initializes a new instance of <see cref="PoissonRegression"/>
 /// </summary>
 /// <param name="env">The environment to use.</param>
 /// <param name="labelColumn">The name of the label column.</param>
 /// <param name="featureColumn">The name of the feature column.</param>
 /// <param name="weightColumn">The name for the example weight column.</param>
 /// <param name="advancedSettings">A delegate to apply all the advanced arguments to the algorithm.</param>
 public PoissonRegression(IHostEnvironment env, string featureColumn, string labelColumn,
                          string weightColumn = null, Action <Arguments> advancedSettings = null)
     : base(env, featureColumn, TrainerUtils.MakeR4ScalarLabel(labelColumn), weightColumn, advancedSettings)
 {
     Host.CheckNonEmpty(featureColumn, nameof(featureColumn));
     Host.CheckNonEmpty(labelColumn, nameof(labelColumn));
 }
 /// <summary>
 /// Initializes a new instance of <see cref="LightGbmRegressorTrainer"/>
 /// </summary>
 /// <param name="env">The private instance of <see cref="IHostEnvironment"/>.</param>
 /// <param name="labelColumn">The name of the label column.</param>
 /// <param name="featureColumn">The name of the feature column.</param>
 /// <param name="groupIdColumn">The name for the column containing the group ID. </param>
 /// <param name="weightColumn">The name for the column containing the initial weight.</param>
 /// <param name="advancedSettings">A delegate to apply all the advanced arguments to the algorithm.</param>
 public LightGbmRegressorTrainer(IHostEnvironment env, string labelColumn, string featureColumn,
                                 string groupIdColumn = null, string weightColumn = null, Action <LightGbmArguments> advancedSettings = null)
     : base(env, LoadNameValue, TrainerUtils.MakeR4ScalarLabel(labelColumn), featureColumn, weightColumn, groupIdColumn, advancedSettings)
 {
     Host.CheckNonEmpty(labelColumn, nameof(labelColumn));
     Host.CheckNonEmpty(featureColumn, nameof(featureColumn));
 }
예제 #3
0
        /// <summary>
        /// Initializes a new instance of <see cref="FastTreeTweedieTrainer"/>
        /// </summary>
        /// <param name="env">The private instance of <see cref="IHostEnvironment"/>.</param>
        /// <param name="labelColumn">The name of the label column.</param>
        /// <param name="featureColumn">The name of the feature column.</param>
        /// <param name="groupIdColumn">The name for the column containing the group ID. </param>
        /// <param name="weightColumn">The name for the column containing the initial weight.</param>
        /// <param name="advancedSettings">A delegate to apply all the advanced arguments to the algorithm.</param>
        public FastTreeTweedieTrainer(IHostEnvironment env, string labelColumn, string featureColumn,
                                      string groupIdColumn = null, string weightColumn = null, Action <Arguments> advancedSettings = null)
            : base(env, TrainerUtils.MakeR4ScalarLabel(labelColumn), featureColumn, weightColumn, groupIdColumn, advancedSettings)
        {
            Host.CheckNonEmpty(labelColumn, nameof(labelColumn));
            Host.CheckNonEmpty(featureColumn, nameof(featureColumn));

            Initialize();
        }
 /// <summary>
 /// Initializes a new instance of <see cref="OlsLinearRegressionTrainer"/>
 /// </summary>
 internal OlsLinearRegressionTrainer(IHostEnvironment env, Arguments args)
     : base(Contracts.CheckRef(env, nameof(env)).Register(LoadNameValue), TrainerUtils.MakeR4VecFeature(args.FeatureColumn),
            TrainerUtils.MakeR4ScalarLabel(args.LabelColumn), TrainerUtils.MakeR4ScalarWeightColumn(args.WeightColumn, args.WeightColumn.IsExplicit))
 {
     Host.CheckValue(args, nameof(args));
     Host.CheckUserArg(args.L2Weight >= 0, nameof(args.L2Weight), "L2 regularization term cannot be negative");
     _l2Weight = args.L2Weight;
     _perParameterSignificance = args.PerParameterSignificance;
 }
예제 #5
0
        internal SdcaRegressionTrainer(IHostEnvironment env, Arguments args, string featureColumn, string labelColumn, string weightColumn = null)
            : base(env, args, TrainerUtils.MakeR4ScalarLabel(labelColumn), TrainerUtils.MakeR4ScalarWeightColumn(weightColumn))
        {
            Host.CheckValue(labelColumn, nameof(labelColumn));
            Host.CheckValue(featureColumn, nameof(featureColumn));

            _loss = args.LossFunction.CreateComponent(env);
            Loss  = _loss;
        }
예제 #6
0
        /// <summary>
        /// Initializes a new instance of <see cref="LogisticRegression"/>
        /// </summary>
        /// <param name="env">The environment to use.</param>
        /// <param name="labelColumn">The name of the label column.</param>
        /// <param name="featureColumn">The name of the feature column.</param>
        /// <param name="weightColumn">The name for the example weight column.</param>
        /// <param name="advancedSettings">A delegate to apply all the advanced arguments to the algorithm.</param>
        public LogisticRegression(IHostEnvironment env, string featureColumn, string labelColumn,
                                  string weightColumn = null, Action <Arguments> advancedSettings = null)
            : base(env, featureColumn, TrainerUtils.MakeR4ScalarLabel(labelColumn), weightColumn, advancedSettings)
        {
            Host.CheckNonEmpty(featureColumn, nameof(featureColumn));
            Host.CheckNonEmpty(labelColumn, nameof(labelColumn));

            _posWeight        = 0;
            ShowTrainingStats = Args.ShowTrainingStats;
        }
예제 #7
0
 /// <summary>
 /// Initializes a new instance of <see cref="FastTreeBinaryClassificationTrainer"/>
 /// </summary>
 /// <param name="env">The private instance of <see cref="IHostEnvironment"/>.</param>
 /// <param name="labelColumn">The name of the label column.</param>
 /// <param name="featureColumn">The name of the feature column.</param>
 /// <param name="weightColumn">The name for the column containing the initial weight.</param>
 /// <param name="minDocumentsInLeafs">The minimal number of documents allowed in a leaf of a regression tree, out of the subsampled data.</param>
 /// <param name="learningRate">The learning rate.</param>
 /// <param name="advancedSettings">A delegate to apply all the advanced arguments to the algorithm.</param>
 public RegressionGamTrainer(IHostEnvironment env,
                             string labelColumn,
                             string featureColumn,
                             string weightColumn                 = null,
                             int minDocumentsInLeafs             = Defaults.MinDocumentsInLeafs,
                             double learningRate                 = Defaults.LearningRates,
                             Action <Arguments> advancedSettings = null)
     : base(env, LoadNameValue, TrainerUtils.MakeR4ScalarLabel(labelColumn), featureColumn, weightColumn, minDocumentsInLeafs, learningRate, advancedSettings)
 {
 }
예제 #8
0
 /// <summary>
 /// Initializes a new instance of <see cref="LightGbmRegressorTrainer"/>
 /// </summary>
 /// <param name="env">The private instance of <see cref="IHostEnvironment"/>.</param>
 /// <param name="labelColumn">The name of the label column.</param>
 /// <param name="featureColumn">The name of the feature column.</param>
 /// <param name="weightColumn">The name for the column containing the initial weight.</param>
 /// <param name="numLeaves">The number of leaves to use.</param>
 /// <param name="numBoostRound">Number of iterations.</param>
 /// <param name="minDataPerLeaf">The minimal number of documents allowed in a leaf of the tree, out of the subsampled data.</param>
 /// <param name="learningRate">The learning rate.</param>
 /// <param name="advancedSettings">A delegate to set more settings.
 /// The settings here will override the ones provided in the direct signature,
 /// if both are present and have different values.
 /// The columns names, however need to be provided directly, not through the <paramref name="advancedSettings"/>.</param>
 public LightGbmRegressorTrainer(IHostEnvironment env, string labelColumn, string featureColumn,
                                 string weightColumn = null,
                                 int?numLeaves       = null,
                                 int?minDataPerLeaf  = null,
                                 double?learningRate = null,
                                 int numBoostRound   = LightGbmArguments.Defaults.NumBoostRound,
                                 Action <LightGbmArguments> advancedSettings = null)
     : base(env, LoadNameValue, TrainerUtils.MakeR4ScalarLabel(labelColumn), featureColumn, weightColumn, null, numLeaves, minDataPerLeaf, learningRate, numBoostRound, advancedSettings)
 {
 }
예제 #9
0
        public OnlineGradientDescentTrainer(IHostEnvironment env, Arguments args)
            : base(args, env, UserNameValue, TrainerUtils.MakeR4ScalarLabel(args.LabelColumn))
        {
            LossFunction = args.LossFunction.CreateComponent(env);

            _outputColumns = new[]
            {
                new SchemaShape.Column(DefaultColumnNames.Score, SchemaShape.Column.VectorKind.Scalar, NumberType.R4, false, new SchemaShape(MetadataUtils.GetTrainerOutputMetadata()))
            };
        }
예제 #10
0
        public SdcaRegressionTrainer(IHostEnvironment env, Arguments args, string featureColumn, string labelColumn, string weightColumn = null)
            : base(Contracts.CheckRef(env, nameof(env)).Register(LoadNameValue), args, TrainerUtils.MakeR4VecFeature(featureColumn),
                   TrainerUtils.MakeR4ScalarLabel(labelColumn), TrainerUtils.MakeR4ScalarWeightColumn(weightColumn))
        {
            Host.CheckValue(labelColumn, nameof(labelColumn));
            Host.CheckValue(featureColumn, nameof(featureColumn));

            _loss = args.LossFunction.CreateComponent(env);
            Loss  = _loss;
            _args = args;
        }
예제 #11
0
 /// <summary>
 /// Initializes a new instance of <see cref="FastTreeBinaryClassificationTrainer"/>
 /// </summary>
 /// <param name="env">The private instance of <see cref="IHostEnvironment"/>.</param>
 /// <param name="labelColumn">The name of the label column.</param>
 /// <param name="featureColumn">The name of the feature column.</param>
 /// <param name="weightColumn">The name for the column containing the initial weight.</param>
 /// <param name="numIterations">The number of iterations to use in learning the features.</param>
 /// <param name="learningRate">The learning rate. GAMs work best with a small learning rate.</param>
 /// <param name="maxBins">The maximum number of bins to use to approximate features</param>
 /// <param name="advancedSettings">A delegate to apply all the advanced arguments to the algorithm.</param>
 public RegressionGamTrainer(IHostEnvironment env,
                             string labelColumn   = DefaultColumnNames.Label,
                             string featureColumn = DefaultColumnNames.Features,
                             string weightColumn  = null,
                             int numIterations    = GamDefaults.NumIterations,
                             double learningRate  = GamDefaults.LearningRates,
                             int maxBins          = GamDefaults.MaxBins,
                             Action <Arguments> advancedSettings = null)
     : base(env, LoadNameValue, TrainerUtils.MakeR4ScalarLabel(labelColumn), featureColumn, weightColumn, numIterations, learningRate, maxBins, advancedSettings)
 {
 }
예제 #12
0
 /// <summary>
 /// Initializes a new instance of <see cref="FastTreeRegressionTrainer"/>
 /// </summary>
 /// <param name="env">The private instance of <see cref="IHostEnvironment"/>.</param>
 /// <param name="labelColumn">The name of the label column.</param>
 /// <param name="featureColumn">The name of the feature column.</param>
 /// <param name="weightColumn">The name for the column containing the initial weight.</param>
 /// <param name="learningRate">The learning rate.</param>
 /// <param name="minDocumentsInLeafs">The minimal number of documents allowed in a leaf of a regression tree, out of the subsampled data.</param>
 /// <param name="numLeaves">The max number of leaves in each regression tree.</param>
 /// <param name="numTrees">Total number of decision trees to create in the ensemble.</param>
 /// <param name="advancedSettings">A delegate to apply all the advanced arguments to the algorithm.</param>
 public FastTreeRegressionTrainer(IHostEnvironment env,
                                  string labelColumn,
                                  string featureColumn,
                                  string weightColumn                 = null,
                                  int numLeaves                       = Defaults.NumLeaves,
                                  int numTrees                        = Defaults.NumTrees,
                                  int minDocumentsInLeafs             = Defaults.MinDocumentsInLeafs,
                                  double learningRate                 = Defaults.LearningRates,
                                  Action <Arguments> advancedSettings = null)
     : base(env, TrainerUtils.MakeR4ScalarLabel(labelColumn), featureColumn, weightColumn, null, numLeaves, numTrees, minDocumentsInLeafs, learningRate, advancedSettings)
 {
 }
예제 #13
0
 /// <summary>
 /// Initializes a new instance of <see cref="LightGbmRankingTrainer"/>
 /// </summary>
 /// <param name="env">The private instance of <see cref="IHostEnvironment"/>.</param>
 /// <param name="labelColumn">The name of the label column.</param>
 /// <param name="featureColumn">The name of the feature column.</param>
 /// <param name="groupId">The name of the column containing the group ID. </param>
 /// <param name="weights">The name of the optional column containing the initial weights.</param>
 /// <param name="numLeaves">The number of leaves to use.</param>
 /// <param name="numBoostRound">Number of iterations.</param>
 /// <param name="minDataPerLeaf">The minimal number of documents allowed in a leaf of the tree, out of the subsampled data.</param>
 /// <param name="learningRate">The learning rate.</param>
 /// <param name="advancedSettings">A delegate to set more settings.
 /// The settings here will override the ones provided in the direct signature,
 /// if both are present and have different values.
 /// The columns names, however need to be provided directly, not through the <paramref name="advancedSettings"/>.</param>
 public LightGbmRankingTrainer(IHostEnvironment env,
                               string labelColumn   = DefaultColumnNames.Label,
                               string featureColumn = DefaultColumnNames.Features,
                               string groupId       = DefaultColumnNames.GroupId,
                               string weights       = null,
                               int?numLeaves        = null,
                               int?minDataPerLeaf   = null,
                               double?learningRate  = null,
                               int numBoostRound    = LightGbmArguments.Defaults.NumBoostRound,
                               Action <LightGbmArguments> advancedSettings = null)
     : base(env, LoadNameValue, TrainerUtils.MakeR4ScalarLabel(labelColumn), featureColumn, weights, groupId, numLeaves, minDataPerLeaf, learningRate, numBoostRound, advancedSettings)
 {
     Host.CheckNonEmpty(groupId, nameof(groupId));
 }
예제 #14
0
 /// <summary>
 /// Initializes a new instance of <see cref="PoissonRegression"/>
 /// </summary>
 /// <param name="env">The environment to use.</param>
 /// <param name="labelColumn">The name of the label column.</param>
 /// <param name="featureColumn">The name of the feature column.</param>
 /// <param name="weightColumn">The name for the example weight column.</param>
 /// <param name="enforceNoNegativity">Enforce non-negative weights.</param>
 /// <param name="l1Weight">Weight of L1 regularizer term.</param>
 /// <param name="l2Weight">Weight of L2 regularizer term.</param>
 /// <param name="memorySize">Memory size for <see cref="LogisticRegression"/>. Lower=faster, less accurate.</param>
 /// <param name="optimizationTolerance">Threshold for optimizer convergence.</param>
 /// <param name="advancedSettings">A delegate to apply all the advanced arguments to the algorithm.</param>
 public PoissonRegression(IHostEnvironment env, string featureColumn, string labelColumn,
                          string weightColumn                 = null,
                          float l1Weight                      = Arguments.Defaults.L1Weight,
                          float l2Weight                      = Arguments.Defaults.L2Weight,
                          float optimizationTolerance         = Arguments.Defaults.OptTol,
                          int memorySize                      = Arguments.Defaults.MemorySize,
                          bool enforceNoNegativity            = Arguments.Defaults.EnforceNonNegativity,
                          Action <Arguments> advancedSettings = null)
     : base(env, featureColumn, TrainerUtils.MakeR4ScalarLabel(labelColumn), weightColumn, advancedSettings,
            l1Weight, l2Weight, optimizationTolerance, memorySize, enforceNoNegativity)
 {
     Host.CheckNonEmpty(featureColumn, nameof(featureColumn));
     Host.CheckNonEmpty(labelColumn, nameof(labelColumn));
 }
예제 #15
0
        /// <summary>
        /// Initializes a new instance of <see cref="FastTreeTweedieTrainer"/>
        /// </summary>
        /// <param name="env">The private instance of <see cref="IHostEnvironment"/>.</param>
        /// <param name="labelColumn">The name of the label column.</param>
        /// <param name="featureColumn">The name of the feature column.</param>
        /// <param name="weightColumn">The name for the column containing the initial weight.</param>
        /// <param name="learningRate">The learning rate.</param>
        /// <param name="minDatapointsInLeaves">The minimal number of documents allowed in a leaf of a regression tree, out of the subsampled data.</param>
        /// <param name="numLeaves">The max number of leaves in each regression tree.</param>
        /// <param name="numTrees">Total number of decision trees to create in the ensemble.</param>
        /// <param name="advancedSettings">A delegate to apply all the advanced arguments to the algorithm.</param>
        public FastTreeTweedieTrainer(IHostEnvironment env,
                                      string labelColumn                  = DefaultColumnNames.Label,
                                      string featureColumn                = DefaultColumnNames.Features,
                                      string weightColumn                 = null,
                                      int numLeaves                       = Defaults.NumLeaves,
                                      int numTrees                        = Defaults.NumTrees,
                                      int minDatapointsInLeaves           = Defaults.MinDocumentsInLeaves,
                                      double learningRate                 = Defaults.LearningRates,
                                      Action <Arguments> advancedSettings = null)
            : base(env, TrainerUtils.MakeR4ScalarLabel(labelColumn), featureColumn, weightColumn, null, numLeaves, numTrees, minDatapointsInLeaves, learningRate, advancedSettings)
        {
            Host.CheckNonEmpty(labelColumn, nameof(labelColumn));
            Host.CheckNonEmpty(featureColumn, nameof(featureColumn));

            Initialize();
        }
예제 #16
0
 /// <summary>
 /// Initializes a new instance of <see cref="SdcaRegressionTrainer"/>
 /// </summary>
 /// <param name="env">The environment to use.</param>
 /// <param name="featureColumn">The features, or independent variables.</param>
 /// <param name="labelColumn">The label, or dependent variable.</param>
 /// <param name="loss">The custom loss.</param>
 /// <param name="weightColumn">The optional example weights.</param>
 /// <param name="l2Const">The L2 regularization hyperparameter.</param>
 /// <param name="l1Threshold">The L1 regularization hyperparameter. Higher values will tend to lead to more sparse model.</param>
 /// <param name="maxIterations">The maximum number of passes to perform over the data.</param>
 /// <param name="advancedSettings">A delegate to set more settings.</param>
 public SdcaRegressionTrainer(IHostEnvironment env,
                              string featureColumn,
                              string labelColumn,
                              string weightColumn             = null,
                              ISupportSdcaRegressionLoss loss = null,
                              float?l2Const     = null,
                              float?l1Threshold = null,
                              int?maxIterations = null,
                              Action <Arguments> advancedSettings = null)
     : base(env, featureColumn, TrainerUtils.MakeR4ScalarLabel(labelColumn), TrainerUtils.MakeR4ScalarWeightColumn(weightColumn), advancedSettings,
            l2Const, l1Threshold, maxIterations)
 {
     Host.CheckNonEmpty(featureColumn, nameof(featureColumn));
     Host.CheckNonEmpty(labelColumn, nameof(labelColumn));
     _loss = loss ?? Args.LossFunction.CreateComponent(env);
     Loss  = _loss;
 }
        /// <summary>
        /// Initializes a new instance of <see cref="FastTreeRegressionTrainer"/>
        /// </summary>
        /// <param name="env">The private instance of <see cref="IHostEnvironment"/>.</param>
        /// <param name="labelColumn">The name of the label column.</param>
        /// <param name="featureColumn">The name of the feature column.</param>
        /// <param name="weightColumn">The name for the column containing the initial weight.</param>
        /// <param name="advancedSettings">A delegate to apply all the advanced arguments to the algorithm.</param>
        /// <param name="learningRate">The learning rate.</param>
        /// <param name="minDocumentsInLeafs">The minimal number of documents allowed in a leaf of a regression tree, out of the subsampled data.</param>
        /// <param name="numLeaves">The max number of leaves in each regression tree.</param>
        /// <param name="numTrees">Total number of decision trees to create in the ensemble.</param>
        public FastTreeRegressionTrainer(IHostEnvironment env,
                                         string labelColumn,
                                         string featureColumn,
                                         string weightColumn                 = null,
                                         int numLeaves                       = Defaults.NumLeaves,
                                         int numTrees                        = Defaults.NumTrees,
                                         int minDocumentsInLeafs             = Defaults.MinDocumentsInLeafs,
                                         double learningRate                 = Defaults.LearningRates,
                                         Action <Arguments> advancedSettings = null)
            : base(env, TrainerUtils.MakeR4ScalarLabel(labelColumn), featureColumn, weightColumn, null, advancedSettings)
        {
            Host.CheckNonEmpty(labelColumn, nameof(labelColumn));
            Host.CheckNonEmpty(featureColumn, nameof(featureColumn));

            if (advancedSettings != null)
            {
                CheckArgsAndAdvancedSettingMismatch(numLeaves, numTrees, minDocumentsInLeafs, learningRate, new Arguments(), Args);
            }
        }
예제 #18
0
 /// <summary>
 /// Trains a new <see cref="RegressionPredictionTransformer{LinearRegressionPredictor}"/>.
 /// </summary>
 /// <param name="env">The pricate instance of <see cref="IHostEnvironment"/>.</param>
 /// <param name="labelColumn">Name of the label column.</param>
 /// <param name="featureColumn">Name of the feature column.</param>
 /// <param name="learningRate">The learning Rate.</param>
 /// <param name="decreaseLearningRate">Decrease learning rate as iterations progress.</param>
 /// <param name="l2RegularizerWeight">L2 Regularization Weight.</param>
 /// <param name="numIterations">Number of training iterations through the data.</param>
 /// <param name="weightsColumn">The name of the weights column.</param>
 /// <param name="lossFunction">The custom loss functions. Defaults to <see cref="SquaredLoss"/> if not provided.</param>
 public OnlineGradientDescentTrainer(IHostEnvironment env,
                                     string labelColumn,
                                     string featureColumn,
                                     float learningRate           = Arguments.OgdDefaultArgs.LearningRate,
                                     bool decreaseLearningRate    = Arguments.OgdDefaultArgs.DecreaseLearningRate,
                                     float l2RegularizerWeight    = Arguments.OgdDefaultArgs.L2RegularizerWeight,
                                     int numIterations            = Arguments.OgdDefaultArgs.NumIterations,
                                     string weightsColumn         = null,
                                     IRegressionLoss lossFunction = null)
     : base(new Arguments
 {
     LearningRate         = learningRate,
     DecreaseLearningRate = decreaseLearningRate,
     L2RegularizerWeight  = l2RegularizerWeight,
     NumIterations        = numIterations,
     LabelColumn          = labelColumn,
     FeatureColumn        = featureColumn,
     InitialWeights       = weightsColumn
 }, env, UserNameValue, TrainerUtils.MakeR4ScalarLabel(labelColumn))
 {
     LossFunction = lossFunction ?? new SquaredLoss();
 }
        /// <summary>
        /// Initializes a new instance of <see cref="LightGbmRegressorTrainer"/>
        /// </summary>
        /// <param name="env">The private instance of <see cref="IHostEnvironment"/>.</param>
        /// <param name="labelColumn">The name of the label column.</param>
        /// <param name="featureColumn">The name of the feature column.</param>
        /// <param name="weightColumn">The name for the column containing the initial weight.</param>
        /// <param name="advancedSettings">A delegate to apply all the advanced arguments to the algorithm.</param>
        /// <param name="numLeaves">The number of leaves to use.</param>
        /// <param name="numBoostRound">Number of iterations.</param>
        /// <param name="minDataPerLeaf">The minimal number of documents allowed in a leaf of the tree, out of the subsampled data.</param>
        /// <param name="learningRate">The learning rate.</param>
        public LightGbmRegressorTrainer(IHostEnvironment env, string labelColumn, string featureColumn,
                                        string weightColumn = null,
                                        int?numLeaves       = null,
                                        int?minDataPerLeaf  = null,
                                        double?learningRate = null,
                                        int numBoostRound   = LightGbmArguments.Defaults.NumBoostRound,
                                        Action <LightGbmArguments> advancedSettings = null)
            : base(env, LoadNameValue, TrainerUtils.MakeR4ScalarLabel(labelColumn), featureColumn, weightColumn, null, advancedSettings)
        {
            Host.CheckNonEmpty(labelColumn, nameof(labelColumn));
            Host.CheckNonEmpty(featureColumn, nameof(featureColumn));

            if (advancedSettings != null)
            {
                CheckArgsAndAdvancedSettingMismatch(numLeaves, minDataPerLeaf, learningRate, numBoostRound, new LightGbmArguments(), Args);
            }

            // override with the directly provided values
            Args.NumBoostRound  = numBoostRound;
            Args.NumLeaves      = numLeaves ?? Args.NumLeaves;
            Args.LearningRate   = learningRate ?? Args.LearningRate;
            Args.MinDataPerLeaf = minDataPerLeaf ?? Args.MinDataPerLeaf;
        }
예제 #20
0
 internal OnlineGradientDescentTrainer(IHostEnvironment env, Arguments args)
     : base(args, env, UserNameValue, TrainerUtils.MakeR4ScalarLabel(args.LabelColumn))
 {
     LossFunction = args.LossFunction.CreateComponent(env);
 }
예제 #21
0
 /// <summary>
 /// Initializes a new instance of <see cref="FastTreeTweedieTrainer"/> by using the legacy <see cref="Arguments"/> class.
 /// </summary>
 internal FastTreeTweedieTrainer(IHostEnvironment env, Arguments args)
     : base(env, args, TrainerUtils.MakeR4ScalarLabel(args.LabelColumn))
 {
     Initialize();
 }
예제 #22
0
 internal RegressionGamTrainer(IHostEnvironment env, Arguments args)
     : base(env, args, LoadNameValue, TrainerUtils.MakeR4ScalarLabel(args.LabelColumn))
 {
 }
예제 #23
0
 /// <summary>
 /// Initializes a new instance of <see cref="LogisticRegression"/>
 /// </summary>
 internal LogisticRegression(IHostEnvironment env, Arguments args)
     : base(env, args, TrainerUtils.MakeR4ScalarLabel(args.LabelColumn))
 {
     _posWeight        = 0;
     ShowTrainingStats = Args.ShowTrainingStats;
 }
예제 #24
0
 /// <summary>
 /// Initializes a new instance of <see cref="FastTreeRegressionTrainer"/> by using the legacy <see cref="Arguments"/> class.
 /// </summary>
 internal FastTreeRegressionTrainer(IHostEnvironment env, Arguments args)
     : base(env, args, TrainerUtils.MakeR4ScalarLabel(args.LabelColumn))
 {
 }
예제 #25
0
 internal LightGbmRegressorTrainer(IHostEnvironment env, LightGbmArguments args)
     : base(env, LoadNameValue, args, TrainerUtils.MakeR4ScalarLabel(args.LabelColumn))
 {
 }
 /// <summary>
 /// Initializes a new instance of <see cref="FastForestRegression"/> by using the legacy <see cref="Arguments"/> class.
 /// </summary>
 public FastForestRegression(IHostEnvironment env, Arguments args)
     : base(env, args, TrainerUtils.MakeR4ScalarLabel(args.LabelColumn), true)
 {
 }