/// <summary> /// FastTree <see cref="RegressionContext"/> extension method. /// </summary> /// <param name="ctx">The <see cref="RegressionContext"/>.</param> /// <param name="label">The label column.</param> /// <param name="features">The features colum.</param> /// <param name="weights">The weights column.</param> /// <param name="numLeaves">The number of leaves to use.</param> /// <param name="numTrees">Total number of decision trees to create in the ensemble.</param> /// <param name="minDocumentsInLeafs">The minimal number of documents allowed in a leaf of a regression tree, out of the subsampled data.</param> /// <param name="learningRate">The learning rate.</param> /// <param name="advancedSettings">Algorithm advanced settings.</param> /// <param name="onFit">A delegate that is called every time the /// <see cref="Estimator{TTupleInShape, TTupleOutShape, TTransformer}.Fit(DataView{TTupleInShape})"/> method is called on the /// <see cref="Estimator{TTupleInShape, TTupleOutShape, TTransformer}"/> instance created out of this. This delegate will receive /// the linear model that was trained. Note that this action cannot change the result in any way; /// it is only a way for the caller to be informed about what was learnt.</param> /// <returns>The Score output column indicating the predicted value.</returns> public static Scalar <float> FastTree(this RegressionContext.RegressionTrainers ctx, Scalar <float> label, Vector <float> features, Scalar <float> weights = null, int numLeaves = Defaults.NumLeaves, int numTrees = Defaults.NumTrees, int minDocumentsInLeafs = Defaults.MinDocumentsInLeafs, double learningRate = Defaults.LearningRates, Action <FastTreeRegressionTrainer.Arguments> advancedSettings = null, Action <FastTreeRegressionPredictor> onFit = null) { CheckUserValues(label, features, weights, numLeaves, numTrees, minDocumentsInLeafs, learningRate, advancedSettings, onFit); var rec = new TrainerEstimatorReconciler.Regression( (env, labelName, featuresName, weightsName) => { var trainer = new FastTreeRegressionTrainer(env, labelName, featuresName, weightsName, numLeaves, numTrees, minDocumentsInLeafs, learningRate, advancedSettings); if (onFit != null) { return(trainer.WithOnFitDelegate(trans => onFit(trans.Model))); } return(trainer); }, label, features, weights); return(rec.Score); }
/// <summary> /// Predict a target using a linear regression model trained with the SDCA trainer. /// </summary> /// <param name="ctx">The regression context trainer object.</param> /// <param name="label">The label, or dependent variable.</param> /// <param name="features">The features, or independent variables.</param> /// <param name="weights">The optional example weights.</param> /// <param name="l2Const">The L2 regularization hyperparameter.</param> /// <param name="l1Threshold">The L1 regularization hyperparameter. Higher values will tend to lead to more sparse model.</param> /// <param name="maxIterations">The maximum number of passes to perform over the data.</param> /// <param name="loss">The custom loss, if unspecified will be <see cref="SquaredLossSDCARegressionLossFunction"/>.</param> /// <param name="advancedSettings">A delegate to set more settings.</param> /// <param name="onFit">A delegate that is called every time the /// <see cref="Estimator{TInShape, TShape, TTransformer}.Fit(DataView{TInShape})"/> method is called on the /// <see cref="Estimator{TInShape, TOutShape, TTransformer}"/> instance created out of this. This delegate will receive /// the linear model that was trained. Note that this action cannot change the result in any way; it is only a way for the caller to /// be informed about what was learnt.</param> /// <returns>The predicted output.</returns> /// <example> /// <format type="text/markdown"> /// <![CDATA[ /// [!code-csharp[SDCA](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Trainers.cs?range=6-10,19-76 "The SDCA regression example.")] /// ]]></format> /// </example> public static Scalar <float> Sdca(this RegressionContext.RegressionTrainers ctx, Scalar <float> label, Vector <float> features, Scalar <float> weights = null, float?l2Const = null, float?l1Threshold = null, int?maxIterations = null, ISupportSdcaRegressionLoss loss = null, Action <SdcaRegressionTrainer.Arguments> advancedSettings = null, Action <LinearRegressionPredictor> onFit = null) { Contracts.CheckValue(label, nameof(label)); Contracts.CheckValue(features, nameof(features)); Contracts.CheckValueOrNull(weights); Contracts.CheckParam(!(l2Const < 0), nameof(l2Const), "Must not be negative, if specified."); Contracts.CheckParam(!(l1Threshold < 0), nameof(l1Threshold), "Must not be negative, if specified."); Contracts.CheckParam(!(maxIterations < 1), nameof(maxIterations), "Must be positive if specified"); Contracts.CheckValueOrNull(loss); Contracts.CheckValueOrNull(advancedSettings); Contracts.CheckValueOrNull(onFit); var rec = new TrainerEstimatorReconciler.Regression( (env, labelName, featuresName, weightsName) => { var trainer = new SdcaRegressionTrainer(env, featuresName, labelName, weightsName, loss, l2Const, l1Threshold, maxIterations, advancedSettings); if (onFit != null) { return(trainer.WithOnFitDelegate(trans => onFit(trans.Model))); } return(trainer); }, label, features, weights); return(rec.Score); }
/// <summary> /// Predict a target using a tree regression model trained with the <see cref="LightGbmRegressorTrainer"/>. /// </summary> /// <param name="catalog">The <see cref="RegressionCatalog"/>.</param> /// <param name="label">The label column.</param> /// <param name="features">The features column.</param> /// <param name="weights">The weights column.</param> /// <param name="numLeaves">The number of leaves to use.</param> /// <param name="numBoostRound">Number of iterations.</param> /// <param name="minDataPerLeaf">The minimal number of documents allowed in a leaf of the tree, out of the subsampled data.</param> /// <param name="learningRate">The learning rate.</param> /// <param name="advancedSettings">Algorithm advanced settings.</param> /// <param name="onFit">A delegate that is called every time the /// <see cref="Estimator{TInShape, TOutShape, TTransformer}.Fit(DataView{TInShape})"/> method is called on the /// <see cref="Estimator{TInShape, TOutShape, TTransformer}"/> instance created out of this. This delegate will receive /// the linear model that was trained. Note that this action cannot change the result in any way; /// it is only a way for the caller to be informed about what was learnt.</param> /// <returns>The Score output column indicating the predicted value.</returns> /// <example> /// <format type="text/markdown"> /// <![CDATA[ /// [!code-csharp[LightGBM](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Static/LightGBMRegression.cs)] /// ]]></format> /// </example> public static Scalar <float> LightGbm(this RegressionCatalog.RegressionTrainers catalog, Scalar <float> label, Vector <float> features, Scalar <float> weights = null, int?numLeaves = null, int?minDataPerLeaf = null, double?learningRate = null, int numBoostRound = LightGbmArguments.Defaults.NumBoostRound, Action <LightGbmArguments> advancedSettings = null, Action <LightGbmRegressionModelParameters> onFit = null) { CheckUserValues(label, features, weights, numLeaves, minDataPerLeaf, learningRate, numBoostRound, advancedSettings, onFit); var rec = new TrainerEstimatorReconciler.Regression( (env, labelName, featuresName, weightsName) => { var trainer = new LightGbmRegressorTrainer(env, labelName, featuresName, weightsName, numLeaves, minDataPerLeaf, learningRate, numBoostRound, advancedSettings); if (onFit != null) { return(trainer.WithOnFitDelegate(trans => onFit(trans.Model))); } return(trainer); }, label, features, weights); return(rec.Score); }
/// <summary> /// Predict a target using a linear regression model trained with the <see cref="Microsoft.ML.Runtime.Learners.LogisticRegression"/> trainer. /// </summary> /// <param name="ctx">The regression context trainer object.</param> /// <param name="label">The label, or dependent variable.</param> /// <param name="features">The features, or independent variables.</param> /// <param name="weights">The optional example weights.</param> /// <param name="enoforceNoNegativity">Enforce non-negative weights.</param> /// <param name="l1Weight">Weight of L1 regularization term.</param> /// <param name="l2Weight">Weight of L2 regularization term.</param> /// <param name="memorySize">Memory size for <see cref="Microsoft.ML.Runtime.Learners.LogisticRegression"/>. Lower=faster, less accurate.</param> /// <param name="optimizationTolerance">Threshold for optimizer convergence.</param> /// <param name="advancedSettings">A delegate to apply all the advanced arguments to the algorithm.</param> /// <param name="onFit">A delegate that is called every time the /// <see cref="Estimator{TInShape, TOutShape, TTransformer}.Fit(DataView{TInShape})"/> method is called on the /// <see cref="Estimator{TInShape, TOutShape, TTransformer}"/> instance created out of this. This delegate will receive /// the linear model that was trained. Note that this action cannot change the result in any way; it is only a way for the caller to /// be informed about what was learnt.</param> /// <returns>The predicted output.</returns> public static Scalar <float> PoissonRegression(this RegressionContext.RegressionTrainers ctx, Scalar <float> label, Vector <float> features, Scalar <float> weights = null, float l1Weight = Arguments.Defaults.L1Weight, float l2Weight = Arguments.Defaults.L2Weight, float optimizationTolerance = Arguments.Defaults.OptTol, int memorySize = Arguments.Defaults.MemorySize, bool enoforceNoNegativity = Arguments.Defaults.EnforceNonNegativity, Action <Arguments> advancedSettings = null, Action <PoissonRegressionPredictor> onFit = null) { LbfgsStaticUtils.ValidateParams(label, features, weights, l1Weight, l2Weight, optimizationTolerance, memorySize, enoforceNoNegativity, advancedSettings, onFit); var rec = new TrainerEstimatorReconciler.Regression( (env, labelName, featuresName, weightsName) => { var trainer = new PoissonRegression(env, featuresName, labelName, weightsName, l1Weight, l2Weight, optimizationTolerance, memorySize, enoforceNoNegativity); if (onFit != null) { return(trainer.WithOnFitDelegate(trans => onFit(trans.Model))); } return(trainer); }, label, features, weights); return(rec.Score); }
/// <summary> /// Predict a target using a linear regression model trained with the <see cref="Microsoft.ML.Runtime.Learners.OnlineGradientDescentTrainer"/> trainer. /// </summary> /// <param name="ctx">The regression context trainer object.</param> /// <param name="label">The label, or dependent variable.</param> /// <param name="features">The features, or independent variables.</param> /// <param name="weights">The optional example weights.</param> /// <param name="lossFunction">The custom loss. Defaults to <see cref="SquaredLoss"/> if not provided.</param> /// <param name="learningRate">The learning Rate.</param> /// <param name="decreaseLearningRate">Decrease learning rate as iterations progress.</param> /// <param name="l2RegularizerWeight">L2 regularization weight.</param> /// <param name="numIterations">Number of training iterations through the data.</param> /// <param name="advancedSettings">A delegate to supply more advanced arguments to the algorithm.</param> /// <param name="onFit">A delegate that is called every time the /// <see cref="Estimator{TInShape, TOutShape, TTransformer}.Fit(DataView{TInShape})"/> method is called on the /// <see cref="Estimator{TInShape, TOutShape, TTransformer}"/> instance created out of this. This delegate will receive /// the linear model that was trained, as well as the calibrator on top of that model. Note that this action cannot change the /// result in any way; it is only a way for the caller to be informed about what was learnt.</param> /// <returns>The set of output columns including in order the predicted binary classification score (which will range /// from negative to positive infinity), and the predicted label.</returns> /// <seealso cref="OnlineGradientDescentTrainer"/>. /// <returns>The predicted output.</returns> public static Scalar <float> OnlineGradientDescent(this RegressionContext.RegressionTrainers ctx, Scalar <float> label, Vector <float> features, Scalar <float> weights = null, IRegressionLoss lossFunction = null, float learningRate = OnlineGradientDescentTrainer.Arguments.OgdDefaultArgs.LearningRate, bool decreaseLearningRate = OnlineGradientDescentTrainer.Arguments.OgdDefaultArgs.DecreaseLearningRate, float l2RegularizerWeight = OnlineGradientDescentTrainer.Arguments.OgdDefaultArgs.L2RegularizerWeight, int numIterations = OnlineLinearArguments.OnlineDefaultArgs.NumIterations, Action <AveragedLinearArguments> advancedSettings = null, Action <LinearRegressionPredictor> onFit = null) { OnlineLinearStaticUtils.CheckUserParams(label, features, weights, learningRate, l2RegularizerWeight, numIterations, onFit, advancedSettings); Contracts.CheckValueOrNull(lossFunction); var rec = new TrainerEstimatorReconciler.Regression( (env, labelName, featuresName, weightsName) => { var trainer = new OnlineGradientDescentTrainer(env, labelName, featuresName, learningRate, decreaseLearningRate, l2RegularizerWeight, numIterations, weightsName, lossFunction, advancedSettings); if (onFit != null) { return(trainer.WithOnFitDelegate(trans => onFit(trans.Model))); } return(trainer); }, label, features, weights); return(rec.Score); }
/// <summary> /// Predict a target using a tree regression model trained with the <see cref="LightGbmRegressionTrainer"/>. /// </summary> /// <param name="catalog">The <see cref="RegressionCatalog"/>.</param> /// <param name="label">The label column.</param> /// <param name="features">The features column.</param> /// <param name="weights">The weights column.</param> /// <param name="options">Algorithm advanced settings.</param> /// <param name="onFit">A delegate that is called every time the /// <see cref="Estimator{TInShape, TOutShape, TTransformer}.Fit(DataView{TInShape})"/> method is called on the /// <see cref="Estimator{TInShape, TOutShape, TTransformer}"/> instance created out of this. This delegate will receive /// the linear model that was trained. Note that this action cannot change the result in any way; /// it is only a way for the caller to be informed about what was learnt.</param> /// <returns>The Score output column indicating the predicted value.</returns> public static Scalar <float> LightGbm(this RegressionCatalog.RegressionTrainers catalog, Scalar <float> label, Vector <float> features, Scalar <float> weights, LightGbmRegressionTrainer.Options options, Action <LightGbmRegressionModelParameters> onFit = null) { Contracts.CheckValue(options, nameof(options)); CheckUserValues(label, features, weights, onFit); var rec = new TrainerEstimatorReconciler.Regression( (env, labelName, featuresName, weightsName) => { options.LabelColumnName = labelName; options.FeatureColumnName = featuresName; options.ExampleWeightColumnName = weightsName; var trainer = new LightGbmRegressionTrainer(env, options); if (onFit != null) { return(trainer.WithOnFitDelegate(trans => onFit(trans.Model))); } return(trainer); }, label, features, weights); return(rec.Score); }
/// <summary> /// Predict a target using a linear regression model trained with the SDCA trainer. /// </summary> /// <param name="label">The label, or dependent variable.</param> /// <param name="features">The features, or independent variables.</param> /// <param name="weights">The optional example weights.</param> /// <param name="l2Const">The L2 regularization hyperparameter.</param> /// <param name="l1Threshold">The L1 regularization hyperparameter. Higher values will tend to lead to more sparse model.</param> /// <param name="maxIterations">The maximum number of passes to perform over the data.</param> /// <param name="loss">The custom loss, if unspecified will be <see cref="SquaredLossSDCARegressionLossFunction"/>.</param> /// <param name="onFit">A delegate that is called every time the /// <see cref="Estimator{TTupleInShape, TTupleOutShape, TTransformer}.Fit(DataView{TTupleInShape})"/> method is called on the /// <see cref="Estimator{TTupleInShape, TTupleOutShape, TTransformer}"/> instance created out of this. This delegate will receive /// the linear model that was trained. Note that this action cannot change the result in any way; it is only a way for the caller to /// be informed about what was learnt.</param> /// <returns>The predicted output.</returns> public static Scalar <float> PredictSdcaRegression(this Scalar <float> label, Vector <float> features, Scalar <float> weights = null, float?l2Const = null, float?l1Threshold = null, int?maxIterations = null, ISupportSdcaRegressionLoss loss = null, Action <LinearRegressionPredictor> onFit = null) { Contracts.CheckValue(label, nameof(label)); Contracts.CheckValue(features, nameof(features)); Contracts.CheckValueOrNull(weights); Contracts.CheckParam(!(l2Const < 0), nameof(l2Const), "Must not be negative"); Contracts.CheckParam(!(l1Threshold < 0), nameof(l1Threshold), "Must not be negative"); Contracts.CheckParam(!(maxIterations < 1), nameof(maxIterations), "Must be positive if specified"); Contracts.CheckValueOrNull(loss); Contracts.CheckValueOrNull(onFit); var args = new SdcaRegressionTrainer.Arguments() { L2Const = l2Const, L1Threshold = l1Threshold, MaxIterations = maxIterations }; if (loss != null) { args.LossFunction = new TrivialRegressionLossFactory(loss); } var rec = new TrainerEstimatorReconciler.Regression( (env, labelName, featuresName, weightsName) => { var trainer = new SdcaRegressionTrainer(env, args, featuresName, labelName, weightsName); if (onFit != null) { return(trainer.WithOnFitDelegate(trans => onFit(trans.Model))); } return(trainer); }, label, features, weights); return(rec.Score); }
/// <summary> /// Predict a target using a tree regression model trained with the <see cref="LightGbmRegressionTrainer"/>. /// </summary> /// <param name="catalog">The <see cref="RegressionCatalog"/>.</param> /// <param name="label">The label column.</param> /// <param name="features">The features column.</param> /// <param name="weights">The weights column.</param> /// <param name="numberOfLeaves">The number of leaves to use.</param> /// <param name="minimumExampleCountPerLeaf">The minimal number of data points allowed in a leaf of the tree, out of the subsampled data.</param> /// <param name="learningRate">The learning rate.</param> /// <param name="numberOfIterations">Number of iterations.</param> /// <param name="onFit">A delegate that is called every time the /// <see cref="Estimator{TInShape, TOutShape, TTransformer}.Fit(DataView{TInShape})"/> method is called on the /// <see cref="Estimator{TInShape, TOutShape, TTransformer}"/> instance created out of this. This delegate will receive /// the linear model that was trained. Note that this action cannot change the result in any way; /// it is only a way for the caller to be informed about what was learnt.</param> /// <returns>The Score output column indicating the predicted value.</returns> /// <example> /// <format type="text/markdown"> /// <![CDATA[ /// [!code-csharp[LightGBM](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Static/LightGBMRegression.cs)] /// ]]></format> /// </example> public static Scalar <float> LightGbm(this RegressionCatalog.RegressionTrainers catalog, Scalar <float> label, Vector <float> features, Scalar <float> weights = null, int?numberOfLeaves = null, int?minimumExampleCountPerLeaf = null, double?learningRate = null, int numberOfIterations = Options.Defaults.NumberOfIterations, Action <LightGbmRegressionModelParameters> onFit = null) { CheckUserValues(label, features, weights, numberOfLeaves, minimumExampleCountPerLeaf, learningRate, numberOfIterations, onFit); var rec = new TrainerEstimatorReconciler.Regression( (env, labelName, featuresName, weightsName) => { var trainer = new LightGbmRegressionTrainer(env, labelName, featuresName, weightsName, numberOfLeaves, minimumExampleCountPerLeaf, learningRate, numberOfIterations); if (onFit != null) { return(trainer.WithOnFitDelegate(trans => onFit(trans.Model))); } return(trainer); }, label, features, weights); return(rec.Score); }
/// <summary> /// Predict a target using a tree regression model trained with the <see cref="LightGbmRegressorTrainer"/>. /// </summary> /// <param name="catalog">The <see cref="RegressionCatalog"/>.</param> /// <param name="label">The label column.</param> /// <param name="features">The features column.</param> /// <param name="weights">The weights column.</param> /// <param name="options">Algorithm advanced settings.</param> /// <param name="onFit">A delegate that is called every time the /// <see cref="Estimator{TInShape, TOutShape, TTransformer}.Fit(DataView{TInShape})"/> method is called on the /// <see cref="Estimator{TInShape, TOutShape, TTransformer}"/> instance created out of this. This delegate will receive /// the linear model that was trained. Note that this action cannot change the result in any way; /// it is only a way for the caller to be informed about what was learnt.</param> /// <returns>The Score output column indicating the predicted value.</returns> public static Scalar <float> LightGbm(this RegressionCatalog.RegressionTrainers catalog, Scalar <float> label, Vector <float> features, Scalar <float> weights, Options options, Action <LightGbmRegressionModelParameters> onFit = null) { CheckUserValues(label, features, weights, options, onFit); var rec = new TrainerEstimatorReconciler.Regression( (env, labelName, featuresName, weightsName) => { options.LabelColumn = labelName; options.FeatureColumn = featuresName; options.WeightColumn = weightsName != null ? Optional <string> .Explicit(weightsName) : Optional <string> .Implicit(DefaultColumnNames.Weight); var trainer = new LightGbmRegressorTrainer(env, options); if (onFit != null) { return(trainer.WithOnFitDelegate(trans => onFit(trans.Model))); } return(trainer); }, label, features, weights); return(rec.Score); }