public void Normal(NDArray result, int?seed, float mean, float stdv) { using (var cpuCopy = new NDArray(cpuAllocator, result.ElementType, result.Shape)) { cpuRandom.Normal(cpuCopy, seed, mean, stdv); TOps.Copy(result, cpuCopy); } }
public void Exponential(NDArray result, int?seed, float lambda) { using (var cpuCopy = new NDArray(cpuAllocator, result.ElementType, result.Shape)) { cpuRandom.Exponential(cpuCopy, seed, lambda); TOps.Copy(result, cpuCopy); } }
public void Uniform(NDArray result, int?seed, float min, float max) { using (var cpuCopy = new NDArray(cpuAllocator, result.ElementType, result.Shape)) { cpuRandom.Uniform(cpuCopy, seed, min, max); TOps.Copy(result, cpuCopy); } }
public void Bernoulli(NDArray result, int?seed, float p) { using (var cpuCopy = new NDArray(cpuAllocator, result.ElementType, result.Shape)) { cpuRandom.Bernoulli(cpuCopy, seed, p); TOps.Copy(result, cpuCopy); } }
public void Cauchy(NDArray result, int?seed, float median, float sigma) { using (var cpuCopy = new NDArray(cpuAllocator, result.ElementType, result.Shape)) { cpuRandom.Cauchy(cpuCopy, seed, median, sigma); TOps.Copy(result, cpuCopy); } }
public void Geometric(Tensor result, int?seed, float p) { using (var cpuCopy = new Tensor(cpuAllocator, result.ElementType, result.Shape)) { cpuRandom.Geometric(cpuCopy, seed, p); TOps.Copy(result, cpuCopy); } }
public void LogNormal(Tensor result, int?seed, float mean, float stdv) { using (var cpuCopy = new Tensor(cpuAllocator, result.ElementType, result.Shape)) { cpuRandom.LogNormal(cpuCopy, seed, mean, stdv); TOps.Copy(result, cpuCopy); } }