public void SerializeSpatialPooler() { HomeostaticPlasticityController homeostaticPlasticityActivator = new HomeostaticPlasticityController(); SpatialPooler spatial = new SpatialPooler(homeostaticPlasticityActivator); using (StreamWriter sw = new StreamWriter($"ser_{nameof(SerializeSpatialPooler)}.txt")) { spatial.Serialize(sw); } }
public void SerializeEmptySpatialPooler() { SpatialPooler spatial = new SpatialPooler(); using (StreamWriter sw = new StreamWriter($"ser_{nameof(SerializeEmptySpatialPooler)}.txt")) { spatial.Serialize(sw); } //using (StreamReader sr = new StreamReader($"ser_{nameof(SerializeEmptySpatialPooler)}.txt")) //{ // SpatialPooler spatial1 = SpatialPooler.Deserialize(sr); // Assert.IsTrue(spatial1.Equals(spatial)); //} }
public void CategorySequenceExperiment() { bool learn = true; Parameters p = Parameters.getAllDefaultParameters(); p.Set(KEY.RANDOM, new ThreadSafeRandom(42)); p.Set(KEY.INPUT_DIMENSIONS, new int[] { 100 }); p.Set(KEY.CELLS_PER_COLUMN, 30); string[] categories = new string[] { "A", "B", "C", "D" }; //string[] categories = new string[] { "A", "B", "C", "D", "E", "F", "G", "H", "I", "K", "L" , "M", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z", "Ö" }; CortexNetwork net = new CortexNetwork("my cortex"); List <CortexRegion> regions = new List <CortexRegion>(); CortexRegion region0 = new CortexRegion("1st Region"); regions.Add(region0); SpatialPooler sp1 = new SpatialPooler(); TemporalMemory tm1 = new TemporalMemory(); var mem = new Connections(); p.apply(mem); sp1.init(mem, UnitTestHelpers.GetMemory()); tm1.init(mem); Dictionary <string, object> settings = new Dictionary <string, object>(); //settings.Add("W", 25); settings.Add("N", 100); //settings.Add("Radius", 1); EncoderBase encoder = new CategoryEncoder(categories, settings); //encoder.Encode() CortexLayer <object, object> layer1 = new CortexLayer <object, object>("L1"); region0.AddLayer(layer1); layer1.HtmModules.Add("encoder", encoder); layer1.HtmModules.Add("sp", sp1); //layer1.HtmModules.Add(tm1); //layer1.Compute(); //IClassifier<string, ComputeCycle> cls = new HtmClassifier<string, ComputeCycle>(); HtmClassifier <string, ComputeCycle> cls = new HtmClassifier <string, ComputeCycle>(); HtmUnionClassifier <string, ComputeCycle> cls1 = new HtmUnionClassifier <string, ComputeCycle>(); //string[] inputs = new string[] { "A", "B", "C", "D" }; string[] inputs = new string[] { "A", "B", "C", "D" }; // // This trains SP. foreach (var input in inputs) { Debug.WriteLine($" ** {input} **"); for (int i = 0; i < 3; i++) { var lyrOut = layer1.Compute((object)input, learn) as ComputeCycle; } } sp1.Serializer("spCSTSerialized.json"); var sp2 = SpatialPooler.Deserializer("spCSTSerialized.json"); layer1.HtmModules.Remove("sp"); layer1.HtmModules.Add("sp", sp2); // Here we add TM module to the layer. layer1.HtmModules.Add("tm", tm1); // // Now, training with SP+TM. SP is pretrained on pattern. for (int i = 0; i < 200; i++) { foreach (var input in inputs) { var lyrOut = layer1.Compute(input, learn) as ComputeCycle; //cls1.Learn(input, lyrOut.activeCells.ToArray(), learn); //Debug.WriteLine($"Current Input: {input}"); cls.Learn(input, lyrOut.ActiveCells.ToArray(), lyrOut.predictiveCells.ToArray()); Debug.WriteLine($"Current Input: {input}"); if (learn == false) { Debug.WriteLine($"Predict Input When Not Learn: {cls.GetPredictedInputValue(lyrOut.predictiveCells.ToArray())}"); } else { Debug.WriteLine($"Predict Input: {cls.GetPredictedInputValue(lyrOut.predictiveCells.ToArray())}"); } Debug.WriteLine("-----------------------------------------------------------\n----------------------------------------------------------"); } if (i == 10) { Debug.WriteLine("Stop Learning From Here----------------------------"); learn = false; } // tm1.reset(mem); } Debug.WriteLine("------------------------------------------------------------------------\n----------------------------------------------------------------------------"); /* * learn = false; * for (int i = 0; i < 19; i++) * { * foreach (var input in inputs) * { * layer1.Compute((object)input, learn); * } * } */ sp1.Serialize("tm.serialize.json"); }