예제 #1
0
        /// <summary>Initializes this <see cref="BatchedJoinBlock{T1,T2}"/> with the specified configuration.</summary>
        /// <param name="batchSize">The number of items to group into a batch.</param>
        /// <param name="dataflowBlockOptions">The options with which to configure this <see cref="BatchedJoinBlock{T1,T2}"/>.</param>
        /// <exception cref="System.ArgumentOutOfRangeException">The <paramref name="batchSize"/> must be positive.</exception>
        /// <exception cref="System.ArgumentNullException">The <paramref name="dataflowBlockOptions"/> is null (Nothing in Visual Basic).</exception>
        public BatchedJoinBlock(int batchSize, GroupingDataflowBlockOptions dataflowBlockOptions)
        {
            // Validate arguments
            if (batchSize < 1)
            {
                throw new ArgumentOutOfRangeException(nameof(batchSize), SR.ArgumentOutOfRange_GenericPositive);
            }
            if (dataflowBlockOptions == null)
            {
                throw new ArgumentNullException(nameof(dataflowBlockOptions));
            }
            if (!dataflowBlockOptions.Greedy)
            {
                throw new ArgumentException(SR.Argument_NonGreedyNotSupported, nameof(dataflowBlockOptions));
            }
            if (dataflowBlockOptions.BoundedCapacity != DataflowBlockOptions.Unbounded)
            {
                throw new ArgumentException(SR.Argument_BoundedCapacityNotSupported, nameof(dataflowBlockOptions));
            }

            // Store arguments
            _batchSize           = batchSize;
            dataflowBlockOptions = dataflowBlockOptions.DefaultOrClone();

            // Configure the source
            _source = new SourceCore <Tuple <IList <T1>, IList <T2> > >(
                this, dataflowBlockOptions, owningSource => ((BatchedJoinBlock <T1, T2>)owningSource).CompleteEachTarget());

            // The action to run when a batch should be created.  This is typically called
            // when we have a full batch, but it will also be called when we're done receiving
            // messages, and thus when there may be a few stragglers we need to make a batch out of.
            Action createBatchAction = () =>
            {
                if (_target1.Count > 0 || _target2.Count > 0)
                {
                    _source.AddMessage(Tuple.Create(_target1.GetAndEmptyMessages(), _target2.GetAndEmptyMessages()));
                }
            };

            // Configure the targets
            _sharedResources = new BatchedJoinBlockTargetSharedResources(
                batchSize, dataflowBlockOptions,
                createBatchAction,
                () =>
            {
                createBatchAction();
                _source.Complete();
            },
                _source.AddException,
                Complete);
            _target1 = new BatchedJoinBlockTarget <T1>(_sharedResources);
            _target2 = new BatchedJoinBlockTarget <T2>(_sharedResources);

            // It is possible that the source half may fault on its own, e.g. due to a task scheduler exception.
            // In those cases we need to fault the target half to drop its buffered messages and to release its
            // reservations. This should not create an infinite loop, because all our implementations are designed
            // to handle multiple completion requests and to carry over only one.
            _source.Completion.ContinueWith((completed, state) =>
            {
                var thisBlock = ((BatchedJoinBlock <T1, T2>)state !) as IDataflowBlock;
                Debug.Assert(completed.IsFaulted, "The source must be faulted in order to trigger a target completion.");
                thisBlock.Fault(completed.Exception !);
            }, this, CancellationToken.None, Common.GetContinuationOptions() | TaskContinuationOptions.OnlyOnFaulted, TaskScheduler.Default);

            // Handle async cancellation requests by declining on the target
            Common.WireCancellationToComplete(
                dataflowBlockOptions.CancellationToken, _source.Completion, state => ((BatchedJoinBlock <T1, T2>)state !).CompleteEachTarget(), this);
#if FEATURE_TRACING
            DataflowEtwProvider etwLog = DataflowEtwProvider.Log;
            if (etwLog.IsEnabled())
            {
                etwLog.DataflowBlockCreated(this, dataflowBlockOptions);
            }
#endif
        }
        /// <summary>Initializes the <see cref="TransformManyBlock{TInput,TOutput}"/> with the specified function and <see cref="ExecutionDataflowBlockOptions"/>.</summary>
        /// <param name="transformSync">The synchronous function to invoke with each data element received.</param>
        /// <param name="transformAsync">The asynchronous function to invoke with each data element received.</param>
        /// <param name="dataflowBlockOptions">The options with which to configure this <see cref="TransformManyBlock{TInput,TOutput}"/>.</param>
        /// <exception cref="System.ArgumentNullException">The <paramref name="transformSync"/> and <paramref name="transformAsync"/> are both null (Nothing in Visual Basic).</exception>
        /// <exception cref="System.ArgumentNullException">The <paramref name="dataflowBlockOptions"/> is null (Nothing in Visual Basic).</exception>
        private TransformManyBlock(Func <TInput, IEnumerable <TOutput> > transformSync, Func <TInput, Task <IEnumerable <TOutput> > > transformAsync, ExecutionDataflowBlockOptions dataflowBlockOptions)
        {
            // Validate arguments.  It's ok for the filterFunction to be null, but not the other parameters.
            if (transformSync == null && transformAsync == null)
            {
                throw new ArgumentNullException("transform");
            }
            if (dataflowBlockOptions == null)
            {
                throw new ArgumentNullException("dataflowBlockOptions");
            }

            Contract.Requires(transformSync == null ^ transformAsync == null, "Exactly one of transformSync and transformAsync must be null.");
            Contract.EndContractBlock();

            // Ensure we have options that can't be changed by the caller
            dataflowBlockOptions = dataflowBlockOptions.DefaultOrClone();

            // Initialize onItemsRemoved delegate if necessary
            Action <ISourceBlock <TOutput>, int> onItemsRemoved = null;

            if (dataflowBlockOptions.BoundedCapacity > 0)
            {
                onItemsRemoved = (owningSource, count) => ((TransformManyBlock <TInput, TOutput>)owningSource)._target.ChangeBoundingCount(-count);
            }

            // Initialize source component
            _source = new SourceCore <TOutput>(this, dataflowBlockOptions,
                                               owningSource => ((TransformManyBlock <TInput, TOutput>)owningSource)._target.Complete(exception: null, dropPendingMessages: true),
                                               onItemsRemoved);

            // If parallelism is employed, we will need to support reordering messages that complete out-of-order.
            if (dataflowBlockOptions.SupportsParallelExecution)
            {
                _reorderingBuffer = new ReorderingBuffer <IEnumerable <TOutput> >(
                    this, (source, messages) => ((TransformManyBlock <TInput, TOutput>)source)._source.AddMessages(messages));
            }

            // Create the underlying target and source
            if (transformSync != null)             // sync
            {
                // If an enumerable function was provided, we can use synchronous completion, meaning
                // that the target will consider a message fully processed as soon as the
                // delegate returns.
                _target = new TargetCore <TInput>(this,
                                                  messageWithId => ProcessMessage(transformSync, messageWithId),
                                                  _reorderingBuffer, dataflowBlockOptions, TargetCoreOptions.None);
            }
            else             // async
            {
                Debug.Assert(transformAsync != null, "Incorrect delegate type.");

                // If a task-based function was provided, we need to use asynchronous completion, meaning
                // that the target won't consider a message completed until the task
                // returned from that delegate has completed.
                _target = new TargetCore <TInput>(this,
                                                  messageWithId => ProcessMessageWithTask(transformAsync, messageWithId),
                                                  _reorderingBuffer, dataflowBlockOptions, TargetCoreOptions.UsesAsyncCompletion);
            }

            // Link up the target half with the source half.  In doing so,
            // ensure exceptions are propagated, and let the source know no more messages will arrive.
            // As the target has completed, and as the target synchronously pushes work
            // through the reordering buffer when async processing completes,
            // we know for certain that no more messages will need to be sent to the source.
#if NET_4_0_ABOVE
            _target.Completion.ContinueWith((completed, state) =>
            {
                var sourceCore = (SourceCore <TOutput>)state;
                if (completed.IsFaulted)
                {
                    sourceCore.AddAndUnwrapAggregateException(completed.Exception);
                }
                sourceCore.Complete();
            }, _source, CancellationToken.None, Common.GetContinuationOptions(), TaskScheduler.Default);
#else
            Action <Task> continuationAction1 = completed =>
            {
                if (completed.IsFaulted)
                {
                    _source.AddAndUnwrapAggregateException(completed.Exception);
                }
                _source.Complete();
            };
            _target.Completion.ContinueWith(continuationAction1, CancellationToken.None, Common.GetContinuationOptions(), TaskScheduler.Default);
#endif

            // It is possible that the source half may fault on its own, e.g. due to a task scheduler exception.
            // In those cases we need to fault the target half to drop its buffered messages and to release its
            // reservations. This should not create an infinite loop, because all our implementations are designed
            // to handle multiple completion requests and to carry over only one.
#if NET_4_0_ABOVE
            _source.Completion.ContinueWith((completed, state) =>
            {
                var thisBlock = ((TransformManyBlock <TInput, TOutput>)state) as IDataflowBlock;
                Debug.Assert(completed.IsFaulted, "The source must be faulted in order to trigger a target completion.");
                thisBlock.Fault(completed.Exception);
            }, this, CancellationToken.None, Common.GetContinuationOptions() | TaskContinuationOptions.OnlyOnFaulted, TaskScheduler.Default);
#else
            Action <Task> continuationAction2 = completed =>
            {
                var thisBlock = this as IDataflowBlock;
                Debug.Assert(completed.IsFaulted, "The source must be faulted in order to trigger a target completion.");
                thisBlock.Fault(completed.Exception);
            };
            _source.Completion.ContinueWith(continuationAction2, CancellationToken.None, Common.GetContinuationOptions() | TaskContinuationOptions.OnlyOnFaulted, TaskScheduler.Default);
#endif

            // Handle async cancellation requests by declining on the target
            Common.WireCancellationToComplete(
                dataflowBlockOptions.CancellationToken, Completion, state => ((TargetCore <TInput>)state).Complete(exception: null, dropPendingMessages: true), _target);
#if FEATURE_TRACING
            DataflowEtwProvider etwLog = DataflowEtwProvider.Log;
            if (etwLog.IsEnabled())
            {
                etwLog.DataflowBlockCreated(this, dataflowBlockOptions);
            }
#endif
        }