예제 #1
0
 public static IEnumerable <SolutionGenome> ReadSolutions(string solutionFile, List <ShapeTemplate> shapes, Stock stock, EAConfig config)
 {
     using (var solFile = new StreamReader(solutionFile, false))
     {
         List <Gene> genes        = null;
         int         shapeCounter = 0;
         string      line;
         while ((line = solFile.ReadLine()) != null)
         {
             line = line.Trim();
             if (line.Contains("[Solution]"))
             {
                 if (genes != null && genes.Any())
                 {
                     yield return(SolutionGenome.ConstructConfig(genes, stock.Length, config));
                 }
                 genes        = new List <Gene>();
                 shapeCounter = 0;
             }
             else if (line != "" && genes != null)
             {
                 var lineData = line.Split(new [] { ',' }).Select(num => Convert.ToInt32(num)).ToList();
                 var point    = new Point(lineData[0], lineData[1]);
                 var rotation = (ClockwiseRotation)(lineData[2]);
                 genes.Add(new Gene(shapes[shapeCounter], point, rotation));
                 shapeCounter += 1;
             }
         }
         if (genes != null && genes.Any())
         {
             yield return(SolutionGenome.ConstructConfig(genes, stock.Length, config));
         }
     }
 }
예제 #2
0
        public static SolutionGenome GenerateRandomSolution(IEnumerable <ShapeTemplate> shapes, Stock stock, EAConfig config)
        {
            var solution = SolutionGenome.ConstructRandom(shapes, stock.Length, config);

            solution.Repair(stock);
            return(solution);
        }
예제 #3
0
        public static int SolutionDistance(SolutionGenome sln1, SolutionGenome sln2)
        {
            var shapes         = sln1.Genes.Select(g => g.Template);
            var sln1ShapeGenes = sln1.Genes.ToDictionary(g => g.Template, g => g);
            var sln2ShapeGenes = sln2.Genes.ToDictionary(g => g.Template, g => g);

            return(shapes
                   .Select(s => Tuple.Create(sln1ShapeGenes[s], sln2ShapeGenes[s]))
                   .Select(gp => (int)Math.Pow(gp.Item1.Origin.ManhattanDistance(gp.Item2.Origin), 2))
                   .Sum());
        }
예제 #4
0
        public void Run(EAConfig config, Stock stock, IEnumerable <ShapeTemplate> shapes)
        {
            var initialSolutions = new List <SolutionGenome>();

            if (config.SolutionInit != "" && File.Exists(config.SolutionInit))
            {
                initialSolutions.AddRange(ReadSolutions(config.SolutionInit, shapes.ToList(), stock, config));
            }
            else
            {
                initialSolutions.AddRange(Enumerable
                                          .Range(initialSolutions.Count(), config.NumParents)
                                          .Select(i => GenerateRandomSolution(shapes, stock, config))
                                          );
            }

            int evalCounter = 0;
            Func <SolutionGenome, List <int> > evaluateSolution = (individual) =>
            {
                var evals = new List <int>();
                if (config.Fitness.Length)
                {
                    evals.Add(stock.Length - individual.SolutionLength);
                }

                if (config.Fitness.Width)
                {
                    evals.Add(stock.Width - individual.SolutionWidth);
                }

                if (config.Fitness.Cut)
                {
                    var placements = new Dictionary <Point, Gene>();
                    foreach (var gene in individual.Genes)
                    {
                        foreach (var point in gene.Phenotype().Points)
                        {
                            placements[point] = gene;
                        }
                    }
                    // Maximizing adjacent points is minimizing cuts
                    evals.Add(
                        individual.Genes.Sum(g => {
                        return(g.Phenotype().AdjacentPoints
                               .Where(p => placements.ContainsKey(p))
                               .Count());
                    })
                        );
                }

                if (config.Fitness.Adjacents)
                {
                    var placements = new Dictionary <Point, Gene>();
                    foreach (var gene in individual.Genes)
                    {
                        foreach (var point in gene.Phenotype().Points)
                        {
                            placements[point] = gene;
                        }
                    }
                    // Minimize number of shapes that are adjacent to each other, also, keep it positive
                    evals.Add(
                        (individual.Genes.Count() * individual.Genes.Count()) - individual.Genes.Sum(g => {
                        return(new HashSet <Gene>(
                                   g.Phenotype().AdjacentPoints
                                   .Where(p => placements.ContainsKey(p))
                                   .Select(p => placements[p])
                                   ).Count());
                    })
                        );
                }
                return(evals);
            };
            Func <IEnumerable <SolutionGenome>, List <EvalNode <SolutionGenome> > > evaluate = (population) =>
            {
                evalCounter += population.Count();

                var popFits = new Dictionary <SolutionGenome, List <int> >();

                foreach (var individual in population)
                {
                    popFits[individual] = evaluateSolution(individual);
                }

                var fittedPopulation = new List <EvalNode <SolutionGenome> >();
                var levels           = new Dictionary <SolutionGenome, int>();
                var dominatedBy      = new Dictionary <SolutionGenome, List <SolutionGenome> >();
                if (popFits[population.First()].Count() > 1)
                {
                    foreach (var individual in population)
                    {
                        var fitnessTypes = popFits[individual];
                        dominatedBy[individual] = new List <SolutionGenome>();
                        foreach (var dominator in population)
                        {
                            var fitPairs = fitnessTypes
                                           .Zip(popFits[dominator], (i, d) => Tuple.Create(i, d));

                            var  ltFits      = fitPairs.Where(el => el.Item1 > el.Item2);
                            var  rtFits      = fitPairs.Where(el => el.Item1 < el.Item2);
                            bool isDominated = ltFits.Count() == 0 && rtFits.Any();
                            if (isDominated)
                            {
                                dominatedBy[individual].Add(dominator);
                            }
                        }
                    }
                    var unFitted     = new List <SolutionGenome>(population);
                    int levelCounter = 1;
                    while (unFitted.Count() > 0)
                    {
                        foreach (var individual in unFitted.ToList())
                        {
                            bool fit = true;
                            foreach (var dominator in dominatedBy[individual])
                            {
                                if (!levels.ContainsKey(dominator))
                                {
                                    fit = false;
                                    break;
                                }
                            }
                            if (fit)
                            {
                                levels[individual] = -levelCounter;
                                unFitted.Remove(individual);
                            }
                        }
                        levelCounter += 1;
                    }
                }
                foreach (var individual in population)
                {
                    var fitnessTypes = popFits[individual];
                    int fitness      = 0;
                    if (fitnessTypes.Count() == 1)
                    {
                        fitness = fitnessTypes.First();
                    }
                    else if (fitnessTypes.Count() > 1)
                    {
                        fitness = levels[individual];
                    }
                    var newFit = new EvalNode <SolutionGenome>(individual, fitness);
                    fittedPopulation.Add(newFit);
                }
                if (config.Sharing)
                {
                    foreach (var eFit in fittedPopulation)
                    {
                        foreach (var nicheFit in fittedPopulation)
                        {
                            eFit.Fitness += (int)Math.Floor(nicheFit.Fitness / Math.Pow(1 + SolutionDistance(eFit.Individual, nicheFit.Individual), 2));
                        }
                    }
                }
                return(fittedPopulation);
            };

            BestPopulation = new List <SolutionGenome>();
            int unchangedBest     = 0;
            int generationCounter = 0;
            Func <IEnumerable <SolutionGenome>, bool> terminate = (population) =>
            {
                generationCounter += 1;

                var _evalPopulation = evaluate((new [] { population, BestPopulation }).SelectMany(p => p))
                                      .ToList();
                int maxFitness = _evalPopulation.Max(i => i.Fitness);
                // We need this unique population handling to prevent best pop bloat in moea
                var uniquePops = new Dictionary <string, EvalNode <SolutionGenome> >();
                foreach (var e in _evalPopulation.Where(s => s.Fitness == maxFitness))
                {
                    uniquePops[String.Join(",", evaluateSolution(e.Individual))] = e;
                }
                var evalPopulation = uniquePops.Values.ToList();

                bool isNewBest      = true;
                var  bestUniquePops = BestPopulation.ToDictionary(i => String.Join(",", evaluateSolution(i)), i => i);
                foreach (var newBest in evalPopulation)
                {
                    if (!bestUniquePops.ContainsKey(String.Join(",", evaluateSolution(newBest.Individual))))
                    {
                        isNewBest     = false;
                        unchangedBest = 0;
                        break;
                    }
                }
                BestPopulation = evalPopulation.Select(e => e.Individual).ToList();
                if (isNewBest)
                {
                    unchangedBest += 1;
                }

                Console.WriteLine("Evals {0}\tLevels: {1}\tAvg Fitness: {2}\tBest Fitnesss {3}\tMutations: {4:0.000} {5:0.000} {6:0.000}\tCrossover: {7:0.000}",
                                  evalCounter,
                                  (new HashSet <int>(_evalPopulation.Select(e => e.Fitness))).Count(),
                                  String.Join(",", population
                                              .Select(s => evaluateSolution(s))
                                              .Aggregate(new List <int> {
                    0, 0, 0, 0
                }, (lhs, rhs) => lhs.Zip(rhs, (l, r) => l + r).ToList())
                                              .Select(total => String.Format("{0:0.000}", total / (double)population.Count()))
                                              ),
                                  String.Join(",", population
                                              .Select(s => evaluateSolution(s))
                                              .Aggregate(new List <int> {
                    0, 0, 0, 0
                }, (lhs, rhs) => lhs.Zip(rhs, (l, r) => Math.Max(l, r)).ToList())
                                              ),
                                  population.Sum(p => p.RateCreepRandom) / population.Count(),
                                  population.Sum(p => p.RateRotateRandom) / population.Count(),
                                  population.Sum(p => p.RateSlideRandom) / population.Count(),
                                  population.Sum(p => p.RateAdjacencyCrossover) / population.Count()
                                  );

                bool evalLimitReached       = config.Termination.EvalLimit != 0 && config.Termination.EvalLimit <= evalCounter;
                bool generationLimitReached =
                    config.Termination.GenerationLimit != 0 && config.Termination.GenerationLimit < generationCounter;
                bool unchangedBestReached = config.Termination.UnchangedBestLimit != 0 && config.Termination.UnchangedBestLimit < unchangedBest;
                return(evalLimitReached || generationLimitReached || unchangedBestReached);
            };

            Func <IEnumerable <SolutionGenome>,
                  IEnumerable <SolutionGenome>,
                  IEnumerable <SolutionGenome> > survive;

            switch (config.SurvivalSelection.SelectionWeight)
            {
            case SelectionWeight.Truncate:
                survive = (parents, offspring) =>
                {
                    return(evaluate(
                               new[] { parents.SkipWhile(s => config.SurvivalSelection.DropParents), offspring }
                               .SelectMany(p => p)
                               )
                           .OrderByDescending(o => o.Fitness)
                           .Select(o => o.Individual)
                           .Take(parents.Count()));
                };
                break;

            case SelectionWeight.Random:
                survive = EASurvivalSelection <SolutionGenome> .CreateTournamentSelector(
                    (kChoices) => kChoices.ToList().ChooseSingle(),
                    evaluate,
                    config.SurvivalSelection.SelectPool,
                    config.SurvivalSelection.Replacement,
                    config.SurvivalSelection.DropParents,
                    config.NumParents
                    );

                break;

            case SelectionWeight.Best:
                survive = EASurvivalSelection <SolutionGenome> .CreateTournamentSelector(
                    (kChoices) => kChoices.MaxByValue((k) => k.Fitness),
                    evaluate,
                    config.SurvivalSelection.SelectPool,
                    config.SurvivalSelection.Replacement,
                    config.SurvivalSelection.DropParents,
                    config.NumParents
                    );

                break;

            case SelectionWeight.Fitness:
                survive = EASurvivalSelection <SolutionGenome> .CreateTournamentSelector(
                    (kChoices) =>
                {
                    var totalFitness = kChoices.Sum(k => k.Fitness);
                    var fitPick      = CmnRandom.Random.Next(0, totalFitness - 1);
                    return(kChoices.First(k =>
                    {
                        fitPick -= k.Fitness;
                        return fitPick <= 0;
                    }));
                },
                    evaluate,
                    config.SurvivalSelection.SelectPool,
                    config.SurvivalSelection.Replacement,
                    config.SurvivalSelection.DropParents,
                    config.NumParents
                    );

                break;

            case SelectionWeight.Rank:
                survive = EASurvivalSelection <SolutionGenome> .CreateTournamentSelector(
                    (kChoices) => kChoices
                    .OrderBy((k) => - k.Fitness)
                    .Select((k, index) => Tuple.Create(k, config.SurvivalSelection.RateP *Math.Pow(1 - config.SurvivalSelection.RateP, index)))
                    .Select(ki => Tuple.Create(ki.Item1, CmnRandom.Random.NextDouble() < ki.Item2))
                    .OrderBy(kp => !kp.Item2)
                    .First().Item1,
                    evaluate,
                    config.SurvivalSelection.SelectPool,
                    config.SurvivalSelection.Replacement,
                    config.SurvivalSelection.DropParents,
                    config.NumParents
                    );

                break;

            case SelectionWeight.Crowding:
                survive = EASurvivalSelection <SolutionGenome> .CreateCrowdingSelector(
                    (kChoices) => { return(kChoices
                                           .OrderBy((k) => - k.Fitness)
                                           .Select((k, index) => Tuple.Create(k, config.SurvivalSelection.RateP *Math.Pow(1 - config.SurvivalSelection.RateP, index)))
                                           .Select(ki => Tuple.Create(ki.Item1, CmnRandom.Random.NextDouble() < ki.Item2))
                                           .OrderBy(kp => !kp.Item2)
                                           .First().Item1); },
                    evaluate,
                    SolutionDistance,
                    config.SurvivalSelection.SelectPool,
                    config.NumParents
                    );

                break;

            default:
                throw new NotImplementedException("Selection weight for survival not found");
            }

            Func <IEnumerable <SolutionGenome>,
                  IEnumerable <SolutionGenome> > breed;

            switch (config.ParentSelection.SelectionWeight)
            {
            case SelectionWeight.None:
                breed = (population) =>
                {
                    return(Enumerable
                           .Range(0, config.NumOffspring)
                           .Select(i => GenerateRandomSolution(shapes, stock, config)));
                };
                break;

            case SelectionWeight.Random:
                breed = EAParentSelection <SolutionGenome> .CreateTournamentSelector(
                    SolutionGenome.GetParentBreeder(stock),
                    (kChoices) => kChoices.ToList().ChooseSingle(),
                    evaluate,
                    config.ParentSelection.SelectPool,
                    config.ParentSelection.Replacement,
                    config.NumOffspring
                    );

                break;

            case SelectionWeight.Best:
                breed = EAParentSelection <SolutionGenome> .CreateTournamentSelector(
                    SolutionGenome.GetParentBreeder(stock),
                    (kChoices) => kChoices.MaxByValue((k) => k.Fitness),
                    evaluate,
                    config.ParentSelection.SelectPool,
                    config.ParentSelection.Replacement,
                    config.NumOffspring
                    );

                break;

            case SelectionWeight.Fitness:
                breed = EAParentSelection <SolutionGenome> .CreateTournamentSelector(
                    SolutionGenome.GetParentBreeder(stock),
                    (kChoices) =>
                {
                    var totalFitness = kChoices.Sum(k => k.Fitness);
                    var fitPick      = CmnRandom.Random.Next(0, totalFitness - 1);
                    return(kChoices.First(k =>
                    {
                        fitPick -= k.Fitness;
                        return fitPick <= 0;
                    }));
                },
                    evaluate,
                    config.ParentSelection.SelectPool,
                    config.ParentSelection.Replacement,
                    config.NumOffspring
                    );

                break;

            case SelectionWeight.Rank:
                breed = EAParentSelection <SolutionGenome> .CreateTournamentSelector(
                    SolutionGenome.GetParentBreeder(stock),
                    (kChoices) => kChoices
                    .OrderBy((k) => - k.Fitness)
                    .Select((k, index) => Tuple.Create(k, config.ParentSelection.RateP *Math.Pow(1 - config.ParentSelection.RateP, index)))
                    .Select(ki => Tuple.Create(ki.Item1, CmnRandom.Random.NextDouble() < ki.Item2))
                    .OrderBy(kp => !kp.Item2)
                    .First().Item1,
                    evaluate,
                    config.ParentSelection.SelectPool,
                    config.ParentSelection.Replacement,
                    config.NumOffspring
                    );

                break;

            default:
                throw new NotImplementedException("Selection weight for parents not handled");
            }

            Action <IEnumerable <SolutionGenome> > mutator = (population) =>
            {
                foreach (var individual in population)
                {
                    foreach (var gene in individual.Genes)
                    {
                        if (CmnRandom.Random.NextDouble() < individual.RateCreepRandom)
                        {
                            gene.CreepRandomize(stock.Length);
                        }
                        if (CmnRandom.Random.NextDouble() < individual.RateRotateRandom)
                        {
                            gene.RotateRandomize();
                        }
                        if (CmnRandom.Random.NextDouble() < individual.RateSlideRandom)
                        {
                            gene.SlideRandomize(stock.Length);
                        }
                    }
                    individual.Repair(stock);
                }
            };

            var ea = new EvolveSolution <SolutionGenome>(
                initialSolutions,
                breed,
                mutator,
                survive,
                terminate
                );
            var newLogData = new List <Tuple <int, List <double> > >();

            foreach (var population in ea.Solve())
            {
                var avg = population
                          .Select(s => evaluateSolution(s))
                          .Aggregate(new List <int> {
                    0, 0, 0, 0
                }, (lhs, rhs) => lhs.Zip(rhs, (l, r) => l + r).ToList())
                          .Select(total => total / (double)population.Count());
                var best = population
                           .Select(s => evaluateSolution(s))
                           .Aggregate(new List <int> {
                    0, 0, 0, 0
                }, (lhs, rhs) => lhs.Zip(rhs, (l, r) => Math.Max(l, r)).ToList());
                var avgBest = avg
                              .Zip(best, (a, b) => new List <double>(new double[] { a, b }))
                              .SelectMany(i => i);
                newLogData.Add(Tuple.Create(evalCounter, avgBest.ToList()));
            }
            logFileData.Add(newLogData);
        }