private AccordResult CalculateLinearRegression(List <BalancePointPair> allBalancePointPairs, WthNormalParams normalParamsKey) { var allBalancePointGroups = allBalancePointPairs.GroupBy(s => new { s.CoolingBalancePoint, s.HeatingBalancePoint }); List <AccordResult> accordResults = new List <AccordResult>(); foreach (var group in allBalancePointGroups) { try { List <BalancePointPair> IdenticalBalancePointPairsFromAllReadings = group.ToList(); BalancePointPair _pointPair = IdenticalBalancePointPairsFromAllReadings.First(); int readingsCount = IdenticalBalancePointPairsFromAllReadings.Count; double[] fullYData = new double[readingsCount]; double[] fullYDataDailyAvg = new double[readingsCount]; double[][] hcddMatrix = new double[readingsCount][]; double[][] hcddMatrixNonDaily = new double[readingsCount][]; foreach (BalancePointPair balancePointPair in IdenticalBalancePointPairsFromAllReadings) { fullYData[IdenticalBalancePointPairsFromAllReadings.IndexOf(balancePointPair)] = (balancePointPair.ActualUsage); fullYDataDailyAvg[IdenticalBalancePointPairsFromAllReadings.IndexOf(balancePointPair)] = (balancePointPair.ActualUsage / balancePointPair.DaysInReading); hcddMatrix[IdenticalBalancePointPairsFromAllReadings.IndexOf(balancePointPair)] = new double[] { (balancePointPair.HeatingDegreeDays / balancePointPair.DaysInReading), (balancePointPair.CoolingDegreeDays / balancePointPair.DaysInReading) }; } if (!(fullYData.Sum() > 0)) { return(new AccordResult()); } double[] avgHddsForEachReadingInYear = new double[readingsCount]; double[] avgCddsForEachReadingInYear = new double[readingsCount]; for (int i = 0; i < readingsCount; i++) { avgHddsForEachReadingInYear[i] = hcddMatrix[i][0]; avgCddsForEachReadingInYear[i] = hcddMatrix[i][1]; } double[] modelParams = new double[3]; modelParams[0] = 0; modelParams[1] = 0; modelParams[2] = 0; if (_pointPair.HeatingBalancePoint == 0 && _pointPair.CoolingBalancePoint == 0) { double[] onesVector = new double[readingsCount]; for (int i = 0; i < readingsCount; i++) { onesVector[i] = 1; } modelParams[0] = Fit.LineThroughOrigin(onesVector, fullYDataDailyAvg); OrdinaryLeastSquares ols = new OrdinaryLeastSquares() { UseIntercept = false }; double r2 = MathNet.Numerics.GoodnessOfFit.CoefficientOfDetermination( onesVector.Select(x => x * modelParams[0]), fullYDataDailyAvg); AccordResult accordResult = new AccordResult() { IsSimpleSingleRegression = true, HeatingBP = _pointPair.HeatingBalancePoint, CoolingBP = _pointPair.CoolingBalancePoint, Intercept = modelParams[0], R2Accord = r2, //R2Accord = 0 }; accordResults.Add(accordResult); } else if (_pointPair.CoolingBalancePoint != 0 && _pointPair.HeatingBalancePoint != 0) { try { MultipleLinearRegressionAnalysis mlra = new MultipleLinearRegressionAnalysis(intercept: true); mlra.Learn(hcddMatrix, fullYDataDailyAvg); var regressionAccord = mlra.Regression; double[] predictedAccord = regressionAccord.Transform(hcddMatrix); double r2Accord = new RSquaredLoss(numberOfInputs: 2, expected: fullYDataDailyAvg) { Adjust = false }.Loss(predictedAccord); double r2Coeff = regressionAccord.CoefficientOfDetermination(hcddMatrix, fullYDataDailyAvg, adjust: false); bool FTestFailed = !mlra.FTest.Significant; AccordResult accordResult = new AccordResult() { IsMultipleLinearRegression = true, HeatingBP = _pointPair.HeatingBalancePoint, CoolingBP = _pointPair.CoolingBalancePoint, Intercept = regressionAccord.Intercept, B2 = regressionAccord.Weights[0], B4 = regressionAccord.Weights[1], R2Accord = r2Accord, FTestFailed = FTestFailed }; //int degreesOfFreedom = normalParamsKey.MoCt - 3; double degreesOfFreedomAsDouble = mlra.Regression.GetDegreesOfFreedom(readingsCount); int degreesOfFreedom = Convert.ToInt32(degreesOfFreedomAsDouble); //if (degreesOfFreedom != 9) //{ // Log.Warning($"Multivariable regression. DOF expected to be 9. is: {degreesOfFreedom}"); //} //if (degreesOfFreedom != dof) //{ // Console.WriteLine($"dof different. mlra.dof = {dof} expected = {degreesOfFreedom}"); //} double s = Math.Sqrt(fullYDataDailyAvg.Subtract(predictedAccord).Pow(2).Sum() / degreesOfFreedom); double ssxHdd = Math.Sqrt((avgHddsForEachReadingInYear.Subtract(avgHddsForEachReadingInYear.Mean())).Pow(2).Sum()); double ssxCdd = Math.Sqrt((avgCddsForEachReadingInYear.Subtract(avgCddsForEachReadingInYear.Mean())).Pow(2).Sum()); double seSubHdd = s / ssxHdd; double seSubCdd = s / ssxCdd; double tStatisticHdd = regressionAccord.Weights[0] / seSubHdd; double tStatisticCdd = regressionAccord.Weights[1] / seSubCdd; double tCriticalFivePercent = 2.262156; double tCriticalTenPercent = 1.833113; bool myTestHdd = Math.Abs(tStatisticHdd) >= tCriticalTenPercent; bool myTestCdd = Math.Abs(tStatisticCdd) >= tCriticalTenPercent; //if (myTestHdd != mlra.Coefficients[0].TTest.Significant && degreesOfFreedom != 9) //{ // Console.WriteLine($"nope. mystat - {tStatisticHdd} accordstat - {mlra.Coefficients[0].TTest.Statistic} " + // $"accordCritical - {mlra.Coefficients[0].TTest.CriticalValue}"); //} //if (myTestCdd != mlra.Coefficients[1].TTest.Significant && degreesOfFreedom != 9) //{ // Console.WriteLine($"nope. mystat - {tStatisticCdd} accordstat - {mlra.Coefficients[1].TTest.Statistic} " + // $"accordCritical - {mlra.Coefficients[1].TTest.CriticalValue}"); //} //if (mlra.Coefficients.All(x => x.TTest.Significant) && // mlra.Coefficients.All(x => x.Value > 0) && // mlra.Regression.Intercept > 0 && // r2Accord >= 0.7500) //{ // accordResults.Add(accordResult); //} if ( myTestHdd && myTestCdd && mlra.Coefficients.All(x => x.Value > 0) && mlra.Regression.Intercept > 0 //&& accordResult.R2Accord >= 0.75 ) { accordResults.Add(accordResult); } } catch (Exception e) { Log.Debug($"AccID/UtilID/UnitID: {normalParamsKey.AccID}/{normalParamsKey.UtilID}/{normalParamsKey.UnitID} >> " + $"MultipleLinearRegressionAnalysis Exception: {e.Message}"); } } else if (_pointPair.HeatingBalancePoint > 0) { OrdinaryLeastSquares ols = new OrdinaryLeastSquares() { UseIntercept = true }; SimpleLinearRegression regressionAccord = ols.Learn(avgHddsForEachReadingInYear, fullYDataDailyAvg); double[] predictedAccord = regressionAccord.Transform(avgHddsForEachReadingInYear); double r2Accord = new RSquaredLoss(1, fullYDataDailyAvg).Loss(predictedAccord); //int degreesOfFreedom = normalParamsKey.MoCt - 2; double degreesOfFreedomAsDouble = regressionAccord.GetDegreesOfFreedom(readingsCount); int degreesOfFreedom = Convert.ToInt32(degreesOfFreedomAsDouble); //if (degreesOfFreedom != 10) //{ // Log.Warning($"Single variable regression. DOF expected to be 10. is: {degreesOfFreedom}"); //} double ssx = Math.Sqrt((avgHddsForEachReadingInYear.Subtract(avgHddsForEachReadingInYear.Mean())).Pow(2).Sum()); double s = Math.Sqrt(fullYDataDailyAvg.Subtract(predictedAccord).Pow(2).Sum() / degreesOfFreedom); double error = regressionAccord.GetStandardError(avgHddsForEachReadingInYear, fullYDataDailyAvg); double seSubB = s / ssx; double hypothesizedValue = 0; double tStatistic = regressionAccord.Slope / seSubB; double tCriticalFivePercent = 2.228138; double tCriticalTenPercent = 1.812461; bool myTest = Math.Abs(tStatistic) >= tCriticalTenPercent; //TTest tTest = new TTest( // estimatedValue: regressionAccord.Slope, standardError: seSubB, degreesOfFreedom: degreesOfFreedom, // hypothesizedValue: hypothesizedValue, alternate: OneSampleHypothesis.ValueIsDifferentFromHypothesis // ); //if (myTest != tTest.Significant) //{ // Console.WriteLine($"nope. mystat - {tStatistic} accordstat - {tTest.Statistic} accordCritical - {tTest.CriticalValue}"); //} AccordResult accordResult = new AccordResult() { IsSimpleSingleRegression = true, HeatingBP = _pointPair.HeatingBalancePoint, Intercept = regressionAccord.Intercept, B2 = regressionAccord.Slope, R2Accord = r2Accord }; //if (tTest.Significant && accordResult.B2 > 0 && r2Accord >= 0.7500) //{ // accordResults.Add(accordResult); //} if (myTest && accordResult.B2 > 0 && accordResult.Intercept > 0 //&& r2Accord >= 0.7500 ) { accordResults.Add(accordResult); } } else if (_pointPair.CoolingBalancePoint > 0) { OrdinaryLeastSquares ols = new OrdinaryLeastSquares() { UseIntercept = true }; SimpleLinearRegression regressionAccord = ols.Learn(avgCddsForEachReadingInYear, fullYDataDailyAvg); double[] predictedAccord = regressionAccord.Transform(avgCddsForEachReadingInYear); double r2Accord = new RSquaredLoss(1, fullYDataDailyAvg).Loss(predictedAccord); //int degreesOfFreedom = normalParamsKey.MoCt - 2; double degreesOfFreedomAsDouble = regressionAccord.GetDegreesOfFreedom(readingsCount); int degreesOfFreedom = Convert.ToInt32(degreesOfFreedomAsDouble); //if (degreesOfFreedom != 10) //{ // Log.Warning($"Single variable regression. DOF expected to be 10. is: {degreesOfFreedom}"); //} double ssx = Math.Sqrt(avgCddsForEachReadingInYear.Subtract(avgCddsForEachReadingInYear.Mean()).Pow(2).Sum()); double s = Math.Sqrt(fullYDataDailyAvg.Subtract(predictedAccord).Pow(2).Sum() / degreesOfFreedom); double seSubB = s / ssx; double hypothesizedValue = 0; double tStatistic = regressionAccord.Slope / seSubB; double tCriticalFivePercent = 2.22813885198627; double tCriticalTenPercent = 1.812461; bool myTest = Math.Abs(tStatistic) >= tCriticalTenPercent; //TTest tTest = new TTest( // estimatedValue: regressionAccord.Slope, standardError: seSubB, degreesOfFreedom: degreesOfFreedom, // hypothesizedValue: hypothesizedValue, alternate: OneSampleHypothesis.ValueIsDifferentFromHypothesis // ); //if (myTest != tTest.Significant) //{ // Console.WriteLine($"nope. mystat - {tStatistic} accordstat - {tTest.Statistic} accordCritical - {tTest.CriticalValue}"); //} AccordResult accordResult = new AccordResult() { IsSimpleSingleRegression = true, CoolingBP = _pointPair.CoolingBalancePoint, Intercept = regressionAccord.Intercept, B4 = regressionAccord.Slope, R2Accord = r2Accord }; //if (tTest.Significant && accordResult.B4 > 0 && r2Accord >= 0.7500) //{ // accordResults.Add(accordResult); //} if ( myTest && accordResult.B4 > 0 //&& r2Accord >= 0.7500 ) { accordResults.Add(accordResult); } } } catch (Exception e) { Log.Debug($"AccID/UtilID/UnitID: {normalParamsKey.AccID}/{normalParamsKey.UtilID}/{normalParamsKey.UnitID} >> {e.Message} {e.StackTrace}"); } } AccordResult accordWinner = accordResults .Where(s => s.Intercept >= 0) .OrderByDescending(s => s.R2Accord).ToList().FirstOrDefault(); return(accordWinner); }