void DecomposableTrainAndPredict() { using (var env = new LocalEnvironment() .AddStandardComponents()) // ScoreUtils.GetScorer requires scorers to be registered in the ComponentCatalog { var loader = TextLoader.ReadFile(env, MakeIrisTextLoaderArgs(), new MultiFileSource(GetDataPath(TestDatasets.irisData.trainFilename))); var term = TermTransform.Create(env, loader, "Label"); var concat = new ConcatTransform(env, "Features", "SepalLength", "SepalWidth", "PetalLength", "PetalWidth").Transform(term); var trainer = new SdcaMultiClassTrainer(env, "Features", "Label", advancedSettings: (s) => { s.MaxIterations = 100; s.Shuffle = true; s.NumThreads = 1; }); IDataView trainData = trainer.Info.WantCaching ? (IDataView) new CacheDataView(env, concat, prefetch: null) : concat; var trainRoles = new RoleMappedData(trainData, label: "Label", feature: "Features"); // Auto-normalization. NormalizeTransform.CreateIfNeeded(env, ref trainRoles, trainer); var predictor = trainer.Train(new Runtime.TrainContext(trainRoles)); var scoreRoles = new RoleMappedData(concat, label: "Label", feature: "Features"); IDataScorerTransform scorer = ScoreUtils.GetScorer(predictor, scoreRoles, env, trainRoles.Schema); // Cut out term transform from pipeline. var newScorer = ApplyTransformUtils.ApplyAllTransformsToData(env, scorer, loader, term); var keyToValue = new KeyToValueTransform(env, "PredictedLabel").Transform(newScorer); var model = env.CreatePredictionEngine <IrisDataNoLabel, IrisPrediction>(keyToValue); var testData = loader.AsEnumerable <IrisDataNoLabel>(env, false); foreach (var input in testData.Take(20)) { var prediction = model.Predict(input); Assert.True(prediction.PredictedLabel == "Iris-setosa"); } } }
public void TrainAndPredictIrisModelUsingDirectInstantiationTest() { string dataPath = GetDataPath("iris.txt"); string testDataPath = dataPath; using (var env = new TlcEnvironment(seed: 1, conc: 1)) { // Pipeline var loader = new TextLoader(env, new TextLoader.Arguments() { HasHeader = false, Column = new[] { new TextLoader.Column("Label", DataKind.R4, 0), new TextLoader.Column("SepalLength", DataKind.R4, 1), new TextLoader.Column("SepalWidth", DataKind.R4, 2), new TextLoader.Column("PetalLength", DataKind.R4, 3), new TextLoader.Column("PetalWidth", DataKind.R4, 4) } }, new MultiFileSource(dataPath)); IDataTransform trans = new ConcatTransform(env, loader, "Features", "SepalLength", "SepalWidth", "PetalLength", "PetalWidth"); // Normalizer is not automatically added though the trainer has 'NormalizeFeatures' On/Auto trans = NormalizeTransform.CreateMinMaxNormalizer(env, trans, "Features"); // Train var trainer = new SdcaMultiClassTrainer(env, new SdcaMultiClassTrainer.Arguments() { NumThreads = 1 }); // Explicity adding CacheDataView since caching is not working though trainer has 'Caching' On/Auto var cached = new CacheDataView(env, trans, prefetch: null); var trainRoles = new RoleMappedData(cached, label: "Label", feature: "Features"); var pred = trainer.Train(trainRoles); // Get scorer and evaluate the predictions from test data IDataScorerTransform testDataScorer = GetScorer(env, trans, pred, testDataPath); var metrics = Evaluate(env, testDataScorer); CompareMatrics(metrics); // Create prediction engine and test predictions var model = env.CreatePredictionEngine <IrisData, IrisPrediction>(testDataScorer); ComparePredictions(model); // Get feature importance i.e. weight vector var summary = ((MulticlassLogisticRegressionPredictor)pred).GetSummaryInKeyValuePairs(trainRoles.Schema); Assert.Equal(7.757864, Convert.ToDouble(summary[0].Value), 5); } }
void Extensibility() { var dataPath = GetDataPath(IrisDataPath); using (var env = new LocalEnvironment()) { var loader = TextLoader.ReadFile(env, MakeIrisTextLoaderArgs(), new MultiFileSource(dataPath)); Action <IrisData, IrisData> action = (i, j) => { j.Label = i.Label; j.PetalLength = i.SepalLength > 3 ? i.PetalLength : i.SepalLength; j.PetalWidth = i.PetalWidth; j.SepalLength = i.SepalLength; j.SepalWidth = i.SepalWidth; }; var lambda = LambdaTransform.CreateMap(env, loader, action); var term = TermTransform.Create(env, lambda, "Label"); var concat = new ConcatTransform(env, "Features", "SepalLength", "SepalWidth", "PetalLength", "PetalWidth") .Transform(term); var trainer = new SdcaMultiClassTrainer(env, new SdcaMultiClassTrainer.Arguments { MaxIterations = 100, Shuffle = true, NumThreads = 1 }); IDataView trainData = trainer.Info.WantCaching ? (IDataView) new CacheDataView(env, concat, prefetch: null) : concat; var trainRoles = new RoleMappedData(trainData, label: "Label", feature: "Features"); // Auto-normalization. NormalizeTransform.CreateIfNeeded(env, ref trainRoles, trainer); var predictor = trainer.Train(new Runtime.TrainContext(trainRoles)); var scoreRoles = new RoleMappedData(concat, label: "Label", feature: "Features"); IDataScorerTransform scorer = ScoreUtils.GetScorer(predictor, scoreRoles, env, trainRoles.Schema); var keyToValue = new KeyToValueTransform(env, "PredictedLabel").Transform(scorer); var model = env.CreatePredictionEngine <IrisData, IrisPrediction>(keyToValue); var testLoader = TextLoader.ReadFile(env, MakeIrisTextLoaderArgs(), new MultiFileSource(dataPath)); var testData = testLoader.AsEnumerable <IrisData>(env, false); foreach (var input in testData.Take(20)) { var prediction = model.Predict(input); Assert.True(prediction.PredictedLabel == input.Label); } } }
void DecomposableTrainAndPredict() { var dataPath = GetDataPath(IrisDataPath); using (var env = new TlcEnvironment()) { var loader = new TextLoader(env, MakeIrisTextLoaderArgs(), new MultiFileSource(dataPath)); var term = new TermTransform(env, loader, "Label"); var concat = new ConcatTransform(env, term, "Features", "SepalLength", "SepalWidth", "PetalLength", "PetalWidth"); var trainer = new SdcaMultiClassTrainer(env, new SdcaMultiClassTrainer.Arguments { MaxIterations = 100, Shuffle = true, NumThreads = 1 }); IDataView trainData = trainer.Info.WantCaching ? (IDataView) new CacheDataView(env, concat, prefetch: null) : concat; var trainRoles = new RoleMappedData(trainData, label: "Label", feature: "Features"); // Auto-normalization. NormalizeTransform.CreateIfNeeded(env, ref trainRoles, trainer); var predictor = trainer.Train(new Runtime.TrainContext(trainRoles)); var scoreRoles = new RoleMappedData(concat, label: "Label", feature: "Features"); IDataScorerTransform scorer = ScoreUtils.GetScorer(predictor, scoreRoles, env, trainRoles.Schema); // Cut out term transform from pipeline. var newScorer = ApplyTransformUtils.ApplyAllTransformsToData(env, scorer, loader, term); var keyToValue = new KeyToValueTransform(env, newScorer, "PredictedLabel"); var model = env.CreatePredictionEngine <IrisDataNoLabel, IrisPrediction>(keyToValue); var testLoader = new TextLoader(env, MakeIrisTextLoaderArgs(), new MultiFileSource(dataPath)); var testData = testLoader.AsEnumerable <IrisDataNoLabel>(env, false); foreach (var input in testData.Take(20)) { var prediction = model.Predict(input); Assert.True(prediction.PredictedLabel == "Iris-setosa"); } } }
public void TrainSentiment() { using (var env = new ConsoleEnvironment(seed: 1)) { // Pipeline var loader = TextLoader.ReadFile(env, new TextLoader.Arguments() { AllowQuoting = false, AllowSparse = false, Separator = "tab", HasHeader = true, Column = new[] { new TextLoader.Column() { Name = "Label", Source = new [] { new TextLoader.Range() { Min = 0, Max = 0 } }, Type = DataKind.Num }, new TextLoader.Column() { Name = "SentimentText", Source = new [] { new TextLoader.Range() { Min = 1, Max = 1 } }, Type = DataKind.Text } } }, new MultiFileSource(_sentimentDataPath)); var text = TextFeaturizingEstimator.Create(env, new TextFeaturizingEstimator.Arguments() { Column = new TextFeaturizingEstimator.Column { Name = "WordEmbeddings", Source = new[] { "SentimentText" } }, OutputTokens = true, KeepPunctuations = false, StopWordsRemover = new Runtime.TextAnalytics.PredefinedStopWordsRemoverFactory(), VectorNormalizer = TextFeaturizingEstimator.TextNormKind.None, CharFeatureExtractor = null, WordFeatureExtractor = null, }, loader); var trans = WordEmbeddingsTransform.Create(env, new WordEmbeddingsTransform.Arguments() { Column = new WordEmbeddingsTransform.Column[1] { new WordEmbeddingsTransform.Column { Name = "Features", Source = "WordEmbeddings_TransformedText" } }, ModelKind = WordEmbeddingsTransform.PretrainedModelKind.Sswe, }, text); // Train var trainer = new SdcaMultiClassTrainer(env, "Features", "Label", maxIterations: 20); var trainRoles = new RoleMappedData(trans, label: "Label", feature: "Features"); var predicted = trainer.Train(trainRoles); _consumer.Consume(predicted); } }
private static IPredictor TrainSentimentCore() { var dataPath = s_sentimentDataPath; using (var env = new TlcEnvironment(seed: 1)) { // Pipeline var loader = new TextLoader(env, new TextLoader.Arguments() { AllowQuoting = false, AllowSparse = false, Separator = "tab", HasHeader = true, Column = new[] { new TextLoader.Column() { Name = "Label", Source = new [] { new TextLoader.Range() { Min = 0, Max = 0 } }, Type = DataKind.Num }, new TextLoader.Column() { Name = "SentimentText", Source = new [] { new TextLoader.Range() { Min = 1, Max = 1 } }, Type = DataKind.Text } } }, new MultiFileSource(dataPath)); var text = TextTransform.Create(env, new TextTransform.Arguments() { Column = new TextTransform.Column { Name = "WordEmbeddings", Source = new[] { "SentimentText" } }, KeepDiacritics = false, KeepPunctuations = false, TextCase = Runtime.TextAnalytics.TextNormalizerTransform.CaseNormalizationMode.Lower, OutputTokens = true, StopWordsRemover = new Runtime.TextAnalytics.PredefinedStopWordsRemoverFactory(), VectorNormalizer = TextTransform.TextNormKind.None, CharFeatureExtractor = null, WordFeatureExtractor = null, }, loader); var trans = new WordEmbeddingsTransform(env, new WordEmbeddingsTransform.Arguments() { Column = new WordEmbeddingsTransform.Column[1] { new WordEmbeddingsTransform.Column { Name = "Features", Source = "WordEmbeddings_TransformedText" } }, ModelKind = WordEmbeddingsTransform.PretrainedModelKind.Sswe, }, text); // Train var trainer = new SdcaMultiClassTrainer(env, new SdcaMultiClassTrainer.Arguments() { MaxIterations = 20 }); var trainRoles = new RoleMappedData(trans, label: "Label", feature: "Features"); return(trainer.Train(trainRoles)); } }