/// <summary> /// Predict a target using a linear binary classification model trained with the SDCA trainer, and log-loss. /// </summary> /// <param name="catalog">The binary classification catalog trainer object.</param> /// <param name="label">The label, or dependent variable.</param> /// <param name="features">The features, or independent variables.</param> /// <param name="weights">The optional example weights.</param> /// <param name="options">Advanced arguments to the algorithm.</param> /// <param name="onFit">A delegate that is called every time the /// <see cref="Estimator{TInShape, TOutShape, TTransformer}.Fit(DataView{TInShape})"/> method is called on the /// <see cref="Estimator{TInShape, TOutShape, TTransformer}"/> instance created out of this. This delegate will receive /// the linear model that was trained, as well as the calibrator on top of that model. Note that this action cannot change the /// result in any way; it is only a way for the caller to be informed about what was learnt.</param> /// <returns>The set of output columns including in order the predicted binary classification score (which will range /// from negative to positive infinity), the calibrated prediction (from 0 to 1), and the predicted label.</returns> /// <example> /// <format type="text/markdown"> /// <![CDATA[ /// [!code-csharp[SDCA](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Static/SDCABinaryClassification.cs)] /// ]]></format> /// </example> public static (Scalar <float> score, Scalar <float> probability, Scalar <bool> predictedLabel) Sdca( this BinaryClassificationCatalog.BinaryClassificationTrainers catalog, Scalar <bool> label, Vector <float> features, Scalar <float> weights, SdcaCalibratedBinaryTrainer.Options options, Action <CalibratedModelParametersBase <LinearBinaryModelParameters, PlattCalibrator> > onFit = null) { Contracts.CheckValue(label, nameof(label)); Contracts.CheckValue(features, nameof(features)); Contracts.CheckValueOrNull(weights); Contracts.CheckValueOrNull(options); Contracts.CheckValueOrNull(onFit); var rec = new TrainerEstimatorReconciler.BinaryClassifier( (env, labelName, featuresName, weightsName) => { options.LabelColumnName = labelName; options.FeatureColumnName = featuresName; var trainer = new SdcaCalibratedBinaryTrainer(env, options); if (onFit != null) { return(trainer.WithOnFitDelegate(trans => { onFit(trans.Model); })); } return(trainer); }, label, features, weights); return(rec.Output); }
/// <summary> /// Predict a target using a linear binary classification model trained with the SDCA trainer, and log-loss. /// </summary> /// <param name="catalog">The binary classification catalog trainer object.</param> /// <param name="label">The label, or dependent variable.</param> /// <param name="features">The features, or independent variables.</param> /// <param name="weights">The optional example weights.</param> /// <param name="l2Regularization">The L2 regularization hyperparameter.</param> /// <param name="l1Threshold">The L1 regularization hyperparameter. Higher values will tend to lead to more sparse model.</param> /// <param name="numberOfIterations">The maximum number of passes to perform over the data.</param> /// <param name="onFit">A delegate that is called every time the /// <see cref="Estimator{TInShape, TOutShape, TTransformer}.Fit(DataView{TInShape})"/> method is called on the /// <see cref="Estimator{TInShape, TOutShape, TTransformer}"/> instance created out of this. This delegate will receive /// the linear model that was trained, as well as the calibrator on top of that model. Note that this action cannot change the /// result in any way; it is only a way for the caller to be informed about what was learnt.</param> /// <returns>The set of output columns including in order the predicted binary classification score (which will range /// from negative to positive infinity), the calibrated prediction (from 0 to 1), and the predicted label.</returns> /// <example> /// <format type="text/markdown"> /// <![CDATA[ /// [!code-csharp[SDCA](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Static/SDCABinaryClassification.cs)] /// ]]></format> /// </example> public static (Scalar <float> score, Scalar <float> probability, Scalar <bool> predictedLabel) Sdca( this BinaryClassificationCatalog.BinaryClassificationTrainers catalog, Scalar <bool> label, Vector <float> features, Scalar <float> weights = null, float?l2Regularization = null, float?l1Threshold = null, int?numberOfIterations = null, Action <CalibratedModelParametersBase <LinearBinaryModelParameters, PlattCalibrator> > onFit = null) { Contracts.CheckValue(label, nameof(label)); Contracts.CheckValue(features, nameof(features)); Contracts.CheckValueOrNull(weights); Contracts.CheckParam(!(l2Regularization < 0), nameof(l2Regularization), "Must not be negative, if specified."); Contracts.CheckParam(!(l1Threshold < 0), nameof(l1Threshold), "Must not be negative, if specified."); Contracts.CheckParam(!(numberOfIterations < 1), nameof(numberOfIterations), "Must be positive if specified"); Contracts.CheckValueOrNull(onFit); var rec = new TrainerEstimatorReconciler.BinaryClassifier( (env, labelName, featuresName, weightsName) => { var trainer = new SdcaCalibratedBinaryTrainer(env, labelName, featuresName, weightsName, l2Regularization, l1Threshold, numberOfIterations); if (onFit != null) { return(trainer.WithOnFitDelegate(trans => { onFit(trans.Model); })); } return(trainer); }, label, features, weights); return(rec.Output); }