public void TestSVM() { int trainSampleCount = 150; int sigma = 60; #region Generate the training data and classes Matrix<float> trainData = new Matrix<float>(trainSampleCount, 2); Matrix<float> trainClasses = new Matrix<float>(trainSampleCount, 1); Image<Bgr, Byte> img = new Image<Bgr, byte>(500, 500); Matrix<float> sample = new Matrix<float>(1, 2); Matrix<float> trainData1 = trainData.GetRows(0, trainSampleCount / 3, 1); trainData1.GetCols(0, 1).SetRandNormal(new MCvScalar(100), new MCvScalar(sigma)); trainData1.GetCols(1, 2).SetRandNormal(new MCvScalar(300), new MCvScalar(sigma)); Matrix<float> trainData2 = trainData.GetRows(trainSampleCount / 3, 2 * trainSampleCount / 3, 1); trainData2.SetRandNormal(new MCvScalar(400), new MCvScalar(sigma)); Matrix<float> trainData3 = trainData.GetRows(2 * trainSampleCount / 3, trainSampleCount, 1); trainData3.GetCols(0, 1).SetRandNormal(new MCvScalar(300), new MCvScalar(sigma)); trainData3.GetCols(1, 2).SetRandNormal(new MCvScalar(100), new MCvScalar(sigma)); Matrix<float> trainClasses1 = trainClasses.GetRows(0, trainSampleCount / 3, 1); trainClasses1.SetValue(1); Matrix<float> trainClasses2 = trainClasses.GetRows(trainSampleCount / 3, 2 * trainSampleCount / 3, 1); trainClasses2.SetValue(2); Matrix<float> trainClasses3 = trainClasses.GetRows(2 * trainSampleCount / 3, trainSampleCount, 1); trainClasses3.SetValue(3); #endregion using (SVM model = new SVM()) { SVMParams p = new SVMParams(); p.KernelType = Emgu.CV.ML.MlEnum.SVM_KERNEL_TYPE.LINEAR; p.SVMType = Emgu.CV.ML.MlEnum.SVM_TYPE.C_SVC; p.C = 1; p.TermCrit = new MCvTermCriteria(100, 0.00001); //bool trained = model.Train(trainData, trainClasses, null, null, p); bool trained = model.TrainAuto(trainData, trainClasses, null, null, p.MCvSVMParams, 5); model.Save("svmModel.xml"); for (int i = 0; i < img.Height; i++) { for (int j = 0; j < img.Width; j++) { sample.Data[0, 0] = j; sample.Data[0, 1] = i; float response = model.Predict(sample); img[i, j] = response == 1 ? new Bgr(90, 0, 0) : response == 2 ? new Bgr(0, 90, 0) : new Bgr(0, 0, 90); } } int c = model.GetSupportVectorCount(); for (int i = 0; i < c; i++) { float[] v = model.GetSupportVector(i); PointF p1 = new PointF(v[0], v[1]); img.Draw(new CircleF(p1, 4), new Bgr(128, 128, 128), 2); } } // display the original training samples for (int i = 0; i < (trainSampleCount / 3); i++) { PointF p1 = new PointF(trainData1[i, 0], trainData1[i, 1]); img.Draw(new CircleF(p1, 2.0f), new Bgr(255, 100, 100), -1); PointF p2 = new PointF(trainData2[i, 0], trainData2[i, 1]); img.Draw(new CircleF(p2, 2.0f), new Bgr(100, 255, 100), -1); PointF p3 = new PointF(trainData3[i, 0], trainData3[i, 1]); img.Draw(new CircleF(p3, 2.0f), new Bgr(100, 100, 255), -1); } }
private Image <Bgr, Byte> svm() { Stopwatch timer = new Stopwatch(); timer.Start(); int trainSampleCount = 150; int sigma = 60; #region Generate the training data and classes Matrix <float> trainData = new Matrix <float>(trainSampleCount, 2); Matrix <float> trainClasses = new Matrix <float>(trainSampleCount, 1); Image <Bgr, Byte> img = new Image <Bgr, byte>(500, 500); Matrix <float> sample = new Matrix <float>(1, 2); Matrix <float> trainData1 = trainData.GetRows(0, trainSampleCount / 3, 1); trainData1.GetCols(0, 1).SetRandNormal(new MCvScalar(100), new MCvScalar(sigma)); trainData1.GetCols(1, 2).SetRandNormal(new MCvScalar(300), new MCvScalar(sigma)); Matrix <float> trainData2 = trainData.GetRows(trainSampleCount / 3, 2 * trainSampleCount / 3, 1); trainData2.SetRandNormal(new MCvScalar(400), new MCvScalar(sigma)); Matrix <float> trainData3 = trainData.GetRows(2 * trainSampleCount / 3, trainSampleCount, 1); trainData3.GetCols(0, 1).SetRandNormal(new MCvScalar(300), new MCvScalar(sigma)); trainData3.GetCols(1, 2).SetRandNormal(new MCvScalar(100), new MCvScalar(sigma)); Matrix <float> trainClasses1 = trainClasses.GetRows(0, trainSampleCount / 3, 1); trainClasses1.SetValue(1); Matrix <float> trainClasses2 = trainClasses.GetRows(trainSampleCount / 3, 2 * trainSampleCount / 3, 1); trainClasses2.SetValue(2); Matrix <float> trainClasses3 = trainClasses.GetRows(2 * trainSampleCount / 3, trainSampleCount, 1); trainClasses3.SetValue(3); #endregion timer.Stop(); MessageBox.Show("生成" + timer.ElapsedMilliseconds + "ms"); timer.Reset(); timer.Start(); using (SVM model = new SVM()) { SVMParams p = new SVMParams(); p.KernelType = Emgu.CV.ML.MlEnum.SVM_KERNEL_TYPE.LINEAR; p.SVMType = Emgu.CV.ML.MlEnum.SVM_TYPE.C_SVC; p.C = 1; p.TermCrit = new MCvTermCriteria(100, 0.00001); //model.Load(@"D:\Play Data\训练数据"); //bool trained = model.Train(trainData, trainClasses, null, null, p); bool trained = model.TrainAuto(trainData, trainClasses, null, null, p.MCvSVMParams, 5); timer.Stop(); MessageBox.Show("训练" + timer.ElapsedMilliseconds + "ms"); timer.Reset(); timer.Start(); for (int i = 0; i < img.Height; i++) { for (int j = 0; j < img.Width; j++) { sample.Data[0, 0] = j; sample.Data[0, 1] = i; //float response = model.Predict(sample); //img[i, j] = // response == 1 ? new Bgr(90, 0, 0) : // response == 2 ? new Bgr(0, 90, 0) : // new Bgr(0, 0, 90); } } //model.Save(@"D:\Play Data\训练数据"); timer.Stop(); MessageBox.Show("染色" + timer.ElapsedMilliseconds + "ms"); timer.Reset(); timer.Start(); int c = model.GetSupportVectorCount(); for (int i = 0; i < c; i++) { float[] v = model.GetSupportVector(i); PointF p1 = new PointF(v[0], v[1]); img.Draw(new CircleF(p1, 4), new Bgr(128, 128, 128), 2); } timer.Stop(); MessageBox.Show("画圈" + timer.ElapsedMilliseconds + "ms"); timer.Reset(); timer.Start(); } // display the original training samples for (int i = 0; i < (trainSampleCount / 3); i++) { PointF p1 = new PointF(trainData1[i, 0], trainData1[i, 1]); img.Draw(new CircleF(p1, 2.0f), new Bgr(255, 100, 100), -1); PointF p2 = new PointF(trainData2[i, 0], trainData2[i, 1]); img.Draw(new CircleF(p2, 2.0f), new Bgr(100, 255, 100), -1); PointF p3 = new PointF(trainData3[i, 0], trainData3[i, 1]); img.Draw(new CircleF(p3, 2.0f), new Bgr(100, 100, 255), -1); } timer.Stop(); MessageBox.Show("标点" + timer.ElapsedMilliseconds + "ms"); timer.Reset(); timer.Start(); return(img); }
public void TestSVM() { int trainSampleCount = 150; int sigma = 60; #region Generate the training data and classes Matrix <float> trainData = new Matrix <float>(trainSampleCount, 2); Matrix <float> trainClasses = new Matrix <float>(trainSampleCount, 1); Image <Bgr, Byte> img = new Image <Bgr, byte>(500, 500); Matrix <float> sample = new Matrix <float>(1, 2); Matrix <float> trainData1 = trainData.GetRows(0, trainSampleCount / 3, 1); trainData1.GetCols(0, 1).SetRandNormal(new MCvScalar(100), new MCvScalar(sigma)); trainData1.GetCols(1, 2).SetRandNormal(new MCvScalar(300), new MCvScalar(sigma)); Matrix <float> trainData2 = trainData.GetRows(trainSampleCount / 3, 2 * trainSampleCount / 3, 1); trainData2.SetRandNormal(new MCvScalar(400), new MCvScalar(sigma)); Matrix <float> trainData3 = trainData.GetRows(2 * trainSampleCount / 3, trainSampleCount, 1); trainData3.GetCols(0, 1).SetRandNormal(new MCvScalar(300), new MCvScalar(sigma)); trainData3.GetCols(1, 2).SetRandNormal(new MCvScalar(100), new MCvScalar(sigma)); Matrix <float> trainClasses1 = trainClasses.GetRows(0, trainSampleCount / 3, 1); trainClasses1.SetValue(1); Matrix <float> trainClasses2 = trainClasses.GetRows(trainSampleCount / 3, 2 * trainSampleCount / 3, 1); trainClasses2.SetValue(2); Matrix <float> trainClasses3 = trainClasses.GetRows(2 * trainSampleCount / 3, trainSampleCount, 1); trainClasses3.SetValue(3); #endregion using (SVM model = new SVM()) { SVMParams p = new SVMParams(); p.KernelType = Emgu.CV.ML.MlEnum.SvmKernelType.Linear; p.SVMType = Emgu.CV.ML.MlEnum.SvmType.CSvc; p.C = 1; p.TermCrit = new MCvTermCriteria(100, 0.00001); //bool trained = model.Train(trainData, trainClasses, null, null, p); bool trained = model.TrainAuto(trainData, trainClasses, null, null, p.MCvSVMParams, 5); #if !NETFX_CORE String fileName = Path.Combine(Path.GetTempPath(), "svmModel.xml"); model.Save(fileName); if (File.Exists(fileName)) { File.Delete(fileName); } #endif for (int i = 0; i < img.Height; i++) { for (int j = 0; j < img.Width; j++) { sample.Data[0, 0] = j; sample.Data[0, 1] = i; float response = model.Predict(sample); img[i, j] = response == 1 ? new Bgr(90, 0, 0) : response == 2 ? new Bgr(0, 90, 0) : new Bgr(0, 0, 90); } } int c = model.GetSupportVectorCount(); for (int i = 0; i < c; i++) { float[] v = model.GetSupportVector(i); PointF p1 = new PointF(v[0], v[1]); img.Draw(new CircleF(p1, 4), new Bgr(128, 128, 128), 2); } } // display the original training samples for (int i = 0; i < (trainSampleCount / 3); i++) { PointF p1 = new PointF(trainData1[i, 0], trainData1[i, 1]); img.Draw(new CircleF(p1, 2.0f), new Bgr(255, 100, 100), -1); PointF p2 = new PointF(trainData2[i, 0], trainData2[i, 1]); img.Draw(new CircleF(p2, 2.0f), new Bgr(100, 255, 100), -1); PointF p3 = new PointF(trainData3[i, 0], trainData3[i, 1]); img.Draw(new CircleF(p3, 2.0f), new Bgr(100, 100, 255), -1); } }