예제 #1
0
    public void Test_S2LatLngRect_CellOps()
    {
        // Contains(S2Cell), MayIntersect(S2Cell), Intersects(S2Cell)

        // Special cases.
        TestCellOps(S2LatLngRect.Empty, S2Cell.FromFacePosLevel(3, 0, 0), 0);
        TestCellOps(S2LatLngRect.Full, S2Cell.FromFacePosLevel(2, 0, 0), 4);
        TestCellOps(S2LatLngRect.Full, S2Cell.FromFacePosLevel(5, 0, 25), 4);

        // This rectangle includes the first quadrant of face 0.  It's expanded
        // slightly because cell bounding rectangles are slightly conservative.
        S2LatLngRect r4 = RectFromDegrees(-45.1, -45.1, 0.1, 0.1);

        TestCellOps(r4, S2Cell.FromFacePosLevel(0, 0, 0), 3);
        TestCellOps(r4, S2Cell.FromFacePosLevel(0, 0, 1), 4);
        TestCellOps(r4, S2Cell.FromFacePosLevel(1, 0, 1), 0);

        // This rectangle intersects the first quadrant of face 0.
        S2LatLngRect r5 = RectFromDegrees(-10, -45, 10, 0);

        TestCellOps(r5, S2Cell.FromFacePosLevel(0, 0, 0), 3);
        TestCellOps(r5, S2Cell.FromFacePosLevel(0, 0, 1), 3);
        TestCellOps(r5, S2Cell.FromFacePosLevel(1, 0, 1), 0);

        // Rectangle consisting of a single point.
        TestCellOps(RectFromDegrees(4, 4, 4, 4), S2Cell.FromFace(0), 3);

        // Rectangles that intersect the bounding rectangle of a face
        // but not the face itself.
        TestCellOps(RectFromDegrees(41, -87, 42, -79), S2Cell.FromFace(2), 1);
        TestCellOps(RectFromDegrees(-41, 160, -40, -160), S2Cell.FromFace(5), 1);

        // This is the leaf cell at the top right hand corner of face 0.
        // It has two angles of 60 degrees and two of 120 degrees.
        S2Cell cell0tr = new(new S2Point(1 + 1e-12, 1, 1));

        _ = cell0tr.GetRectBound();
        S2LatLng v0 = new(cell0tr.VertexRaw(0));

        TestCellOps(RectFromDegrees(v0.Lat().GetDegrees() - 1e-8,
                                    v0.Lng().GetDegrees() - 1e-8,
                                    v0.Lat().GetDegrees() - 2e-10,
                                    v0.Lng().GetDegrees() + 1e-10), cell0tr, 1);

        // Rectangles that intersect a face but where no vertex of one region
        // is contained by the other region.  The first one passes through
        // a corner of one of the face cells.
        TestCellOps(RectFromDegrees(-37, -70, -36, -20), S2Cell.FromFace(5), 2);

        // These two intersect like a diamond and a square.
        S2Cell       cell202  = S2Cell.FromFacePosLevel(2, 0, 2);
        S2LatLngRect bound202 = cell202.GetRectBound();

        TestCellOps(RectFromDegrees(bound202.Lo().Lat().GetDegrees() + 3,
                                    bound202.Lo().Lng().GetDegrees() + 3,
                                    bound202.Hi().Lat().GetDegrees() - 3,
                                    bound202.Hi().Lng().GetDegrees() - 3), cell202, 2);
    }
예제 #2
0
        public void Test_S2Cell_GetMaxDistanceToEdge()
        {
            // Test an edge for which its antipode crosses the cell. Validates both the
            // standard and brute force implementations for this case.
            S2Cell  cell = S2Cell.FromFacePosLevel(0, 0, 20);
            S2Point a    = -S2.Interpolate(2.0, cell.Center(), cell.Vertex(0));
            S2Point b    = -S2.Interpolate(2.0, cell.Center(), cell.Vertex(2));

            S1ChordAngle actual   = cell.MaxDistance(a, b);
            S1ChordAngle expected = GetMaxDistanceToEdgeBruteForce(cell, a, b);

            Assert2.Near(expected.Radians(), S1ChordAngle.Straight.Radians(), S2.DoubleError);
            Assert2.Near(actual.Radians(), S1ChordAngle.Straight.Radians(), S2.DoubleError);
        }
        public void testMayIntersect()
        {
            var vertices = new List <S2Point>();

            vertices.Add(S2Point.Normalize(new S2Point(1, -1.1, 0.8)));
            vertices.Add(S2Point.Normalize(new S2Point(1, -0.8, 1.1)));
            var line = new S2Polyline(vertices);

            for (var face = 0; face < 6; ++face)
            {
                var cell = S2Cell.FromFacePosLevel(face, (byte)0, 0);
                assertEquals(line.MayIntersect(cell), (face & 1) == 0);
            }
        }
예제 #4
0
        public void Test_S2RegionEncodeDecodeTest_S2Cell()
        {
            S2Cell cell_from_point        = new(new S2Point(1, 2, 3));
            S2Cell cell_from_latlng       = new(S2LatLng.FromDegrees(39.0, -120.0));
            S2Cell cell_from_face_pos_lvl = S2Cell.FromFacePosLevel(3, 0x12345678, S2.kMaxCellLevel - 4);
            S2Cell cell_from_from_face    = S2Cell.FromFace(0);

            var cell = TestEncodeDecode(kEncodedCellFromPoint, cell_from_point);

            Assert.Equal(cell_from_point, cell);
            cell = TestEncodeDecode(kEncodedCellFromLatLng, cell_from_latlng);
            Assert.Equal(cell_from_latlng, cell);
            cell = TestEncodeDecode(kEncodedCellFromFacePosLevel, cell_from_face_pos_lvl);
            Assert.Equal(cell_from_face_pos_lvl, cell);
            cell = TestEncodeDecode(kEncodedCellFace0, cell_from_from_face);
            Assert.Equal(cell_from_from_face, cell);
        }
예제 #5
0
        public void testCells()
        {
            // For each cube face, we construct some cells on
            // that face and some caps whose positions are relative to that face,
            // and then check for the expected intersection/containment results.

            // The distance from the center of a face to one of its vertices.
            var kFaceRadius = Math.Atan(S2.Sqrt2);

            for (var face = 0; face < 6; ++face)
            {
                // The cell consisting of the entire face.
                var rootCell = S2Cell.FromFacePosLevel(face, (byte)0, 0);

                // A leaf cell at the midpoint of the v=1 edge.
                var edgeCell = new S2Cell(S2Projections.FaceUvToXyz(face, 0, 1 - EPS));

                // A leaf cell at the u=1, v=1 corner.
                var cornerCell = new S2Cell(S2Projections.FaceUvToXyz(face, 1 - EPS, 1 - EPS));

                // Quick check for full and empty caps.
                Assert.True(S2Cap.Full.Contains(rootCell));
                Assert.True(!S2Cap.Empty.MayIntersect(rootCell));

                // Check intersections with the bounding caps of the leaf cells that are
                // adjacent to 'corner_cell' along the Hilbert curve. Because this corner
                // is at (u=1,v=1), the curve stays locally within the same cube face.
                var first = cornerCell.Id.Previous.Previous.Previous;
                var last  = cornerCell.Id.Next.Next.Next.Next;
                for (var id = first; id < last; id = id.Next)
                {
                    var cell = new S2Cell(id);
                    JavaAssert.Equal(cell.CapBound.Contains(cornerCell), id.Equals(cornerCell.Id));
                    JavaAssert.Equal(
                        cell.CapBound.MayIntersect(cornerCell), id.Parent.Contains(cornerCell.Id));
                }

                var antiFace = (face + 3) % 6; // Opposite face.
                for (var capFace = 0; capFace < 6; ++capFace)
                {
                    // A cap that barely contains all of 'cap_face'.
                    var center   = S2Projections.GetNorm(capFace);
                    var covering = S2Cap.FromAxisAngle(center, S1Angle.FromRadians(kFaceRadius + EPS));
                    JavaAssert.Equal(covering.Contains(rootCell), capFace == face);
                    JavaAssert.Equal(covering.MayIntersect(rootCell), capFace != antiFace);
                    JavaAssert.Equal(covering.Contains(edgeCell), center.DotProd(edgeCell.Center) > 0.1);
                    JavaAssert.Equal(covering.Contains(edgeCell), covering.MayIntersect(edgeCell));
                    JavaAssert.Equal(covering.Contains(cornerCell), capFace == face);
                    JavaAssert.Equal(
                        covering.MayIntersect(cornerCell), center.DotProd(cornerCell.Center) > 0);

                    // A cap that barely intersects the edges of 'cap_face'.
                    var bulging = S2Cap.FromAxisAngle(center, S1Angle.FromRadians(S2.PiOver4 + EPS));
                    Assert.True(!bulging.Contains(rootCell));
                    JavaAssert.Equal(bulging.MayIntersect(rootCell), capFace != antiFace);
                    JavaAssert.Equal(bulging.Contains(edgeCell), capFace == face);
                    JavaAssert.Equal(bulging.MayIntersect(edgeCell), center.DotProd(edgeCell.Center) > 0.1);
                    Assert.True(!bulging.Contains(cornerCell));
                    Assert.True(!bulging.MayIntersect(cornerCell));

                    // A singleton cap.
                    var singleton = S2Cap.FromAxisAngle(center, S1Angle.FromRadians(0));
                    JavaAssert.Equal(singleton.MayIntersect(rootCell), capFace == face);
                    Assert.True(!singleton.MayIntersect(edgeCell));
                    Assert.True(!singleton.MayIntersect(cornerCell));
                }
            }
        }
        public void testBasic()
        {
            // Most of the S2LatLngRect methods have trivial implementations that
            // use the R1Interval and S1Interval classes, so most of the testing
            // is done in those unit tests.

            // Test basic properties of empty and full caps.
            var empty = S2LatLngRect.Empty;
            var full  = S2LatLngRect.Full;

            assertTrue(empty.IsValid);
            assertTrue(empty.IsEmpty);
            assertTrue(full.IsValid);
            assertTrue(full.IsFull);

            // assertTrue various constructors and accessor methods.
            var d1 = rectFromDegrees(-90, 0, -45, 180);

            assertDoubleNear(d1.LatLo.Degrees, -90);
            assertDoubleNear(d1.LatHi.Degrees, -45);
            assertDoubleNear(d1.LngLo.Degrees, 0);
            assertDoubleNear(d1.LngHi.Degrees, 180);
            assertTrue(d1.Lat.Equals(new R1Interval(-S2.PiOver2, -S2.PiOver4)));
            assertTrue(d1.Lng.Equals(new S1Interval(0, S2.Pi)));

            // FromCenterSize()
            assertTrue(
                S2LatLngRect.FromCenterSize(S2LatLng.FromDegrees(80, 170), S2LatLng.FromDegrees(40, 60))
                .ApproxEquals(rectFromDegrees(60, 140, 90, -160)));
            assertTrue(S2LatLngRect
                       .FromCenterSize(S2LatLng.FromDegrees(10, 40), S2LatLng.FromDegrees(210, 400)).IsFull);
            assertTrue(
                S2LatLngRect.FromCenterSize(S2LatLng.FromDegrees(-90, 180), S2LatLng.FromDegrees(20, 50))
                .ApproxEquals(rectFromDegrees(-90, 155, -80, -155)));

            // FromPoint(), FromPointPair()
            assertEquals(S2LatLngRect.FromPoint(d1.Lo), new S2LatLngRect(d1.Lo, d1.Lo));
            assertEquals(
                S2LatLngRect.FromPointPair(S2LatLng.FromDegrees(-35, -140), S2LatLng.FromDegrees(15, 155)),
                rectFromDegrees(-35, 155, 15, -140));
            assertEquals(
                S2LatLngRect.FromPointPair(S2LatLng.FromDegrees(25, -70), S2LatLng.FromDegrees(-90, 80)),
                rectFromDegrees(-90, -70, 25, 80));

            // GetCenter(), GetVertex(), Contains(S2LatLng), InteriorContains(S2LatLng).
            var eqM180    = S2LatLng.FromRadians(0, -S2.Pi);
            var northPole = S2LatLng.FromRadians(S2.PiOver2, 0);
            var r1        = new S2LatLngRect(eqM180, northPole);

            assertEquals(r1.Center, S2LatLng.FromRadians(S2.PiOver4, -S2.PiOver2));
            assertEquals(r1.GetVertex(0), S2LatLng.FromRadians(0, S2.Pi));
            assertEquals(r1.GetVertex(1), S2LatLng.FromRadians(0, 0));
            assertEquals(r1.GetVertex(2), S2LatLng.FromRadians(S2.PiOver2, 0));
            assertEquals(r1.GetVertex(3), S2LatLng.FromRadians(S2.PiOver2, S2.Pi));
            assertTrue(r1.Contains(S2LatLng.FromDegrees(30, -45)));
            assertTrue(!r1.Contains(S2LatLng.FromDegrees(30, 45)));
            assertTrue(!r1.InteriorContains(eqM180) && !r1.InteriorContains(northPole));
            assertTrue(r1.Contains(new S2Point(0.5, -0.3, 0.1)));
            assertTrue(!r1.Contains(new S2Point(0.5, 0.2, 0.1)));

            // Make sure that GetVertex() returns vertices in CCW order.
            for (var i = 0; i < 4; ++i)
            {
                var lat = S2.PiOver4 * (i - 2);
                var lng = S2.PiOver2 * (i - 2) + 0.2;
                var r   = new S2LatLngRect(new R1Interval(lat, lat + S2.PiOver4), new S1Interval(
                                               Math.IEEERemainder(lng, 2 * S2.Pi), Math.IEEERemainder(lng + S2.PiOver2, 2 * S2.Pi)));
                for (var k = 0; k < 4; ++k)
                {
                    assertTrue(
                        S2.SimpleCcw(r.GetVertex((k - 1) & 3).ToPoint(), r.GetVertex(k).ToPoint(),
                                     r.GetVertex((k + 1) & 3).ToPoint()));
                }
            }

            // Contains(S2LatLngRect), InteriorContains(S2LatLngRect),
            // Intersects(), InteriorIntersects(), Union(), Intersection().
            //
            // Much more testing of these methods is done in s1interval_unittest
            // and r1interval_unittest.

            var r1Mid      = rectFromDegrees(45, -90, 45, -90);
            var reqM180    = new S2LatLngRect(eqM180, eqM180);
            var rNorthPole = new S2LatLngRect(northPole, northPole);

            testIntervalOps(r1, r1Mid, "TTTT", r1, r1Mid);
            testIntervalOps(r1, reqM180, "TFTF", r1, reqM180);
            testIntervalOps(r1, rNorthPole, "TFTF", r1, rNorthPole);

            assertTrue(r1.Equals(rectFromDegrees(0, -180, 90, 0)));
            testIntervalOps(r1, rectFromDegrees(-10, -1, 1, 20), "FFTT", rectFromDegrees(-10, -180, 90, 20),
                            rectFromDegrees(0, -1, 1, 0));
            testIntervalOps(r1, rectFromDegrees(-10, -1, 0, 20), "FFTF", rectFromDegrees(-10, -180, 90, 20),
                            rectFromDegrees(0, -1, 0, 0));
            testIntervalOps(r1, rectFromDegrees(-10, 0, 1, 20), "FFTF", rectFromDegrees(-10, -180, 90, 20),
                            rectFromDegrees(0, 0, 1, 0));

            testIntervalOps(rectFromDegrees(-15, -160, -15, -150), rectFromDegrees(20, 145, 25, 155),
                            "FFFF", rectFromDegrees(-15, 145, 25, -150), empty);
            testIntervalOps(rectFromDegrees(70, -10, 90, -140), rectFromDegrees(60, 175, 80, 5), "FFTT",
                            rectFromDegrees(60, -180, 90, 180), rectFromDegrees(70, 175, 80, 5));

            // assertTrue that the intersection of two rectangles that overlap in
            // latitude
            // but not longitude is valid, and vice versa.
            testIntervalOps(rectFromDegrees(12, 30, 60, 60), rectFromDegrees(0, 0, 30, 18), "FFFF",
                            rectFromDegrees(0, 0, 60, 60), empty);
            testIntervalOps(rectFromDegrees(0, 0, 18, 42), rectFromDegrees(30, 12, 42, 60), "FFFF",
                            rectFromDegrees(0, 0, 42, 60), empty);

            // AddPoint()
            var p = S2LatLngRect.Empty;

            p = p.AddPoint(S2LatLng.FromDegrees(0, 0));
            p = p.AddPoint(S2LatLng.FromRadians(0, -S2.PiOver2));
            p = p.AddPoint(S2LatLng.FromRadians(S2.PiOver4, -S2.Pi));
            p = p.AddPoint(new S2Point(0, 0, 1));
            assertTrue(p.Equals(r1));

            // Expanded()
            assertTrue(
                rectFromDegrees(70, 150, 80, 170).Expanded(S2LatLng.FromDegrees(20, 30)).ApproxEquals(
                    rectFromDegrees(50, 120, 90, -160)));
            assertTrue(S2LatLngRect.Empty.Expanded(S2LatLng.FromDegrees(20, 30)).IsEmpty);
            assertTrue(S2LatLngRect.Full.Expanded(S2LatLng.FromDegrees(20, 30)).IsFull);
            assertTrue(
                rectFromDegrees(-90, 170, 10, 20).Expanded(S2LatLng.FromDegrees(30, 80)).ApproxEquals(
                    rectFromDegrees(-90, -180, 40, 180)));

            // ConvolveWithCap()
            var llr1 =
                new S2LatLngRect(S2LatLng.FromDegrees(0, 170), S2LatLng.FromDegrees(0, -170))
                .ConvolveWithCap(S1Angle.FromDegrees(15));
            var llr2 =
                new S2LatLngRect(S2LatLng.FromDegrees(-15, 155), S2LatLng.FromDegrees(15, -155));

            assertTrue(llr1.ApproxEquals(llr2));

            llr1 = new S2LatLngRect(S2LatLng.FromDegrees(60, 150), S2LatLng.FromDegrees(80, 10))
                   .ConvolveWithCap(S1Angle.FromDegrees(15));
            llr2 = new S2LatLngRect(S2LatLng.FromDegrees(45, -180), S2LatLng.FromDegrees(90, 180));
            assertTrue(llr1.ApproxEquals(llr2));

            // GetCapBound(), bounding cap at center is smaller:
            assertTrue(new S2LatLngRect(S2LatLng.FromDegrees(-45, -45), S2LatLng.FromDegrees(45, 45)).CapBound.ApproxEquals(S2Cap.FromAxisHeight(new S2Point(1, 0, 0), 0.5)));
            // GetCapBound(), bounding cap at north pole is smaller:
            assertTrue(new S2LatLngRect(S2LatLng.FromDegrees(88, -80), S2LatLng.FromDegrees(89, 80)).CapBound.ApproxEquals(S2Cap.FromAxisAngle(new S2Point(0, 0, 1), S1Angle.FromDegrees(2))));
            // GetCapBound(), longitude span > 180 degrees:
            assertTrue(
                new S2LatLngRect(S2LatLng.FromDegrees(-30, -150), S2LatLng.FromDegrees(-10, 50)).CapBound
                .ApproxEquals(S2Cap.FromAxisAngle(new S2Point(0, 0, -1), S1Angle.FromDegrees(80))));

            // Contains(S2Cell), MayIntersect(S2Cell), Intersects(S2Cell)

            // Special cases.
            testCellOps(empty, S2Cell.FromFacePosLevel(3, (byte)0, 0), 0);
            testCellOps(full, S2Cell.FromFacePosLevel(2, (byte)0, 0), 4);
            testCellOps(full, S2Cell.FromFacePosLevel(5, (byte)0, 25), 4);

            // This rectangle includes the first quadrant of face 0. It's expanded
            // slightly because cell bounding rectangles are slightly conservative.
            var r4 = rectFromDegrees(-45.1, -45.1, 0.1, 0.1);

            testCellOps(r4, S2Cell.FromFacePosLevel(0, (byte)0, 0), 3);
            testCellOps(r4, S2Cell.FromFacePosLevel(0, (byte)0, 1), 4);
            testCellOps(r4, S2Cell.FromFacePosLevel(1, (byte)0, 1), 0);

            // This rectangle intersects the first quadrant of face 0.
            var r5 = rectFromDegrees(-10, -45, 10, 0);

            testCellOps(r5, S2Cell.FromFacePosLevel(0, (byte)0, 0), 3);
            testCellOps(r5, S2Cell.FromFacePosLevel(0, (byte)0, 1), 3);
            testCellOps(r5, S2Cell.FromFacePosLevel(1, (byte)0, 1), 0);

            // Rectangle consisting of a single point.
            testCellOps(rectFromDegrees(4, 4, 4, 4), S2Cell.FromFacePosLevel(0, (byte)0, 0), 3);

            // Rectangles that intersect the bounding rectangle of a face
            // but not the face itself.
            testCellOps(rectFromDegrees(41, -87, 42, -79), S2Cell.FromFacePosLevel(2, (byte)0, 0), 1);
            testCellOps(rectFromDegrees(-41, 160, -40, -160), S2Cell.FromFacePosLevel(5, (byte)0, 0), 1);
            {
                // This is the leaf cell at the top right hand corner of face 0.
                // It has two angles of 60 degrees and two of 120 degrees.
                var cell0tr  = new S2Cell(new S2Point(1 + 1e-12, 1, 1));
                var bound0tr = cell0tr.RectBound;
                var v0       = new S2LatLng(cell0tr.GetVertexRaw(0));
                testCellOps(
                    rectFromDegrees(v0.Lat.Degrees - 1e-8, v0.Lng.Degrees - 1e-8,
                                    v0.Lat.Degrees - 2e-10, v0.Lng.Degrees + 1e-10), cell0tr, 1);
            }

            // Rectangles that intersect a face but where no vertex of one region
            // is contained by the other region. The first one passes through
            // a corner of one of the face cells.
            testCellOps(rectFromDegrees(-37, -70, -36, -20), S2Cell.FromFacePosLevel(5, (byte)0, 0), 2);
            {
                // These two intersect like a diamond and a square.
                var cell202  = S2Cell.FromFacePosLevel(2, (byte)0, 2);
                var bound202 = cell202.RectBound;
                testCellOps(
                    rectFromDegrees(bound202.Lo.Lat.Degrees + 3, bound202.Lo.Lng.Degrees + 3,
                                    bound202.Hi.Lat.Degrees - 3, bound202.Hi.Lng.Degrees - 3), cell202, 2);
            }
        }
        public void testSubdivide()
        {
            for (var face = 0; face < 6; ++face)
            {
                testSubdivide(S2Cell.FromFacePosLevel(face, (byte)0, 0));
            }

            // The maximum edge *ratio* is the ratio of the longest edge of any cell to
            // the shortest edge of any cell at the same level (and similarly for the
            // maximum diagonal ratio).
            //
            // The maximum edge *aspect* is the maximum ratio of the longest edge of a
            // cell to the shortest edge of that same cell (and similarly for the
            // maximum diagonal aspect).

            Console
            .WriteLine("Level    Area      Edge          Diag          Approx       Average\n");
            Console
            .WriteLine("        Ratio  Ratio Aspect  Ratio Aspect    Min    Max    Min    Max\n");
            for (var i = 0; i <= S2CellId.MaxLevel; ++i)
            {
                var s = levelStats[i];
                if (s.count > 0)
                {
                    s.avgArea      /= s.count;
                    s.avgWidth     /= s.count;
                    s.avgEdge      /= s.count;
                    s.avgDiag      /= s.count;
                    s.avgAngleSpan /= s.count;
                }
                Console.WriteLine(
                    "%5d  %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f\n", i,
                    s.maxArea / s.minArea, s.maxEdge / s.minEdge, s.maxEdgeAspect,
                    s.maxDiag / s.minDiag, s.maxDiagAspect, s.minApproxRatio,
                    s.maxApproxRatio, S2Cell.AverageArea(i) / s.maxArea, S2Cell
                    .AverageArea(i)
                    / s.minArea);
            }

            // Now check the validity of the S2 length and area metrics.
            for (var i = 0; i <= S2CellId.MaxLevel; ++i)
            {
                var s = levelStats[i];
                if (s.count == 0)
                {
                    continue;
                }

                Console.WriteLine(
                    "Level {0} - metric (error/actual : error/tolerance)\n", i);

                // The various length calculations are only accurate to 1e-15 or so,
                // so we need to allow for this amount of discrepancy with the theoretical
                // minimums and maximums. The area calculation is accurate to about 1e-15
                // times the cell width.
                testMinMaxAvg("area", i, s.count, 1e-15 * s.minWidth, s.minArea,
                              s.maxArea, s.avgArea, S2Projections.MinArea, S2Projections.MaxArea,
                              S2Projections.AvgArea);
                testMinMaxAvg("width", i, s.count, 1e-15, s.minWidth, s.maxWidth,
                              s.avgWidth, S2Projections.MinWidth, S2Projections.MaxWidth,
                              S2Projections.AvgWidth);
                testMinMaxAvg("edge", i, s.count, 1e-15, s.minEdge, s.maxEdge,
                              s.avgEdge, S2Projections.MinEdge, S2Projections.MaxEdge,
                              S2Projections.AvgEdge);
                testMinMaxAvg("diagonal", i, s.count, 1e-15, s.minDiag, s.maxDiag,
                              s.avgDiag, S2Projections.MinDiag, S2Projections.MaxDiag,
                              S2Projections.AvgDiag);
                testMinMaxAvg("angle span", i, s.count, 1e-15, s.minAngleSpan,
                              s.maxAngleSpan, s.avgAngleSpan, S2Projections.MinAngleSpan,
                              S2Projections.MaxAngleSpan, S2Projections.AvgAngleSpan);

                // The aspect ratio calculations are ratios of lengths and are therefore
                // less accurate at higher subdivision levels.
                Assert.True(s.maxEdgeAspect <= S2Projections.MaxEdgeAspect + 1e-15
                            * (1 << i));
                Assert.True(s.maxDiagAspect <= S2Projections.MaxDiagAspect + 1e-15
                            * (1 << i));
            }
        }