public void testBasic() { // Most of the S2LatLngRect methods have trivial implementations that // use the R1Interval and S1Interval classes, so most of the testing // is done in those unit tests. // Test basic properties of empty and full caps. var empty = S2LatLngRect.Empty; var full = S2LatLngRect.Full; assertTrue(empty.IsValid); assertTrue(empty.IsEmpty); assertTrue(full.IsValid); assertTrue(full.IsFull); // assertTrue various constructors and accessor methods. var d1 = rectFromDegrees(-90, 0, -45, 180); assertDoubleNear(d1.LatLo.Degrees, -90); assertDoubleNear(d1.LatHi.Degrees, -45); assertDoubleNear(d1.LngLo.Degrees, 0); assertDoubleNear(d1.LngHi.Degrees, 180); assertTrue(d1.Lat.Equals(new R1Interval(-S2.PiOver2, -S2.PiOver4))); assertTrue(d1.Lng.Equals(new S1Interval(0, S2.Pi))); // FromCenterSize() assertTrue( S2LatLngRect.FromCenterSize(S2LatLng.FromDegrees(80, 170), S2LatLng.FromDegrees(40, 60)) .ApproxEquals(rectFromDegrees(60, 140, 90, -160))); assertTrue(S2LatLngRect .FromCenterSize(S2LatLng.FromDegrees(10, 40), S2LatLng.FromDegrees(210, 400)).IsFull); assertTrue( S2LatLngRect.FromCenterSize(S2LatLng.FromDegrees(-90, 180), S2LatLng.FromDegrees(20, 50)) .ApproxEquals(rectFromDegrees(-90, 155, -80, -155))); // FromPoint(), FromPointPair() assertEquals(S2LatLngRect.FromPoint(d1.Lo), new S2LatLngRect(d1.Lo, d1.Lo)); assertEquals( S2LatLngRect.FromPointPair(S2LatLng.FromDegrees(-35, -140), S2LatLng.FromDegrees(15, 155)), rectFromDegrees(-35, 155, 15, -140)); assertEquals( S2LatLngRect.FromPointPair(S2LatLng.FromDegrees(25, -70), S2LatLng.FromDegrees(-90, 80)), rectFromDegrees(-90, -70, 25, 80)); // GetCenter(), GetVertex(), Contains(S2LatLng), InteriorContains(S2LatLng). var eqM180 = S2LatLng.FromRadians(0, -S2.Pi); var northPole = S2LatLng.FromRadians(S2.PiOver2, 0); var r1 = new S2LatLngRect(eqM180, northPole); assertEquals(r1.Center, S2LatLng.FromRadians(S2.PiOver4, -S2.PiOver2)); assertEquals(r1.GetVertex(0), S2LatLng.FromRadians(0, S2.Pi)); assertEquals(r1.GetVertex(1), S2LatLng.FromRadians(0, 0)); assertEquals(r1.GetVertex(2), S2LatLng.FromRadians(S2.PiOver2, 0)); assertEquals(r1.GetVertex(3), S2LatLng.FromRadians(S2.PiOver2, S2.Pi)); assertTrue(r1.Contains(S2LatLng.FromDegrees(30, -45))); assertTrue(!r1.Contains(S2LatLng.FromDegrees(30, 45))); assertTrue(!r1.InteriorContains(eqM180) && !r1.InteriorContains(northPole)); assertTrue(r1.Contains(new S2Point(0.5, -0.3, 0.1))); assertTrue(!r1.Contains(new S2Point(0.5, 0.2, 0.1))); // Make sure that GetVertex() returns vertices in CCW order. for (var i = 0; i < 4; ++i) { var lat = S2.PiOver4 * (i - 2); var lng = S2.PiOver2 * (i - 2) + 0.2; var r = new S2LatLngRect(new R1Interval(lat, lat + S2.PiOver4), new S1Interval( Math.IEEERemainder(lng, 2 * S2.Pi), Math.IEEERemainder(lng + S2.PiOver2, 2 * S2.Pi))); for (var k = 0; k < 4; ++k) { assertTrue( S2.SimpleCcw(r.GetVertex((k - 1) & 3).ToPoint(), r.GetVertex(k).ToPoint(), r.GetVertex((k + 1) & 3).ToPoint())); } } // Contains(S2LatLngRect), InteriorContains(S2LatLngRect), // Intersects(), InteriorIntersects(), Union(), Intersection(). // // Much more testing of these methods is done in s1interval_unittest // and r1interval_unittest. var r1Mid = rectFromDegrees(45, -90, 45, -90); var reqM180 = new S2LatLngRect(eqM180, eqM180); var rNorthPole = new S2LatLngRect(northPole, northPole); testIntervalOps(r1, r1Mid, "TTTT", r1, r1Mid); testIntervalOps(r1, reqM180, "TFTF", r1, reqM180); testIntervalOps(r1, rNorthPole, "TFTF", r1, rNorthPole); assertTrue(r1.Equals(rectFromDegrees(0, -180, 90, 0))); testIntervalOps(r1, rectFromDegrees(-10, -1, 1, 20), "FFTT", rectFromDegrees(-10, -180, 90, 20), rectFromDegrees(0, -1, 1, 0)); testIntervalOps(r1, rectFromDegrees(-10, -1, 0, 20), "FFTF", rectFromDegrees(-10, -180, 90, 20), rectFromDegrees(0, -1, 0, 0)); testIntervalOps(r1, rectFromDegrees(-10, 0, 1, 20), "FFTF", rectFromDegrees(-10, -180, 90, 20), rectFromDegrees(0, 0, 1, 0)); testIntervalOps(rectFromDegrees(-15, -160, -15, -150), rectFromDegrees(20, 145, 25, 155), "FFFF", rectFromDegrees(-15, 145, 25, -150), empty); testIntervalOps(rectFromDegrees(70, -10, 90, -140), rectFromDegrees(60, 175, 80, 5), "FFTT", rectFromDegrees(60, -180, 90, 180), rectFromDegrees(70, 175, 80, 5)); // assertTrue that the intersection of two rectangles that overlap in // latitude // but not longitude is valid, and vice versa. testIntervalOps(rectFromDegrees(12, 30, 60, 60), rectFromDegrees(0, 0, 30, 18), "FFFF", rectFromDegrees(0, 0, 60, 60), empty); testIntervalOps(rectFromDegrees(0, 0, 18, 42), rectFromDegrees(30, 12, 42, 60), "FFFF", rectFromDegrees(0, 0, 42, 60), empty); // AddPoint() var p = S2LatLngRect.Empty; p = p.AddPoint(S2LatLng.FromDegrees(0, 0)); p = p.AddPoint(S2LatLng.FromRadians(0, -S2.PiOver2)); p = p.AddPoint(S2LatLng.FromRadians(S2.PiOver4, -S2.Pi)); p = p.AddPoint(new S2Point(0, 0, 1)); assertTrue(p.Equals(r1)); // Expanded() assertTrue( rectFromDegrees(70, 150, 80, 170).Expanded(S2LatLng.FromDegrees(20, 30)).ApproxEquals( rectFromDegrees(50, 120, 90, -160))); assertTrue(S2LatLngRect.Empty.Expanded(S2LatLng.FromDegrees(20, 30)).IsEmpty); assertTrue(S2LatLngRect.Full.Expanded(S2LatLng.FromDegrees(20, 30)).IsFull); assertTrue( rectFromDegrees(-90, 170, 10, 20).Expanded(S2LatLng.FromDegrees(30, 80)).ApproxEquals( rectFromDegrees(-90, -180, 40, 180))); // ConvolveWithCap() var llr1 = new S2LatLngRect(S2LatLng.FromDegrees(0, 170), S2LatLng.FromDegrees(0, -170)) .ConvolveWithCap(S1Angle.FromDegrees(15)); var llr2 = new S2LatLngRect(S2LatLng.FromDegrees(-15, 155), S2LatLng.FromDegrees(15, -155)); assertTrue(llr1.ApproxEquals(llr2)); llr1 = new S2LatLngRect(S2LatLng.FromDegrees(60, 150), S2LatLng.FromDegrees(80, 10)) .ConvolveWithCap(S1Angle.FromDegrees(15)); llr2 = new S2LatLngRect(S2LatLng.FromDegrees(45, -180), S2LatLng.FromDegrees(90, 180)); assertTrue(llr1.ApproxEquals(llr2)); // GetCapBound(), bounding cap at center is smaller: assertTrue(new S2LatLngRect(S2LatLng.FromDegrees(-45, -45), S2LatLng.FromDegrees(45, 45)).CapBound.ApproxEquals(S2Cap.FromAxisHeight(new S2Point(1, 0, 0), 0.5))); // GetCapBound(), bounding cap at north pole is smaller: assertTrue(new S2LatLngRect(S2LatLng.FromDegrees(88, -80), S2LatLng.FromDegrees(89, 80)).CapBound.ApproxEquals(S2Cap.FromAxisAngle(new S2Point(0, 0, 1), S1Angle.FromDegrees(2)))); // GetCapBound(), longitude span > 180 degrees: assertTrue( new S2LatLngRect(S2LatLng.FromDegrees(-30, -150), S2LatLng.FromDegrees(-10, 50)).CapBound .ApproxEquals(S2Cap.FromAxisAngle(new S2Point(0, 0, -1), S1Angle.FromDegrees(80)))); // Contains(S2Cell), MayIntersect(S2Cell), Intersects(S2Cell) // Special cases. testCellOps(empty, S2Cell.FromFacePosLevel(3, (byte)0, 0), 0); testCellOps(full, S2Cell.FromFacePosLevel(2, (byte)0, 0), 4); testCellOps(full, S2Cell.FromFacePosLevel(5, (byte)0, 25), 4); // This rectangle includes the first quadrant of face 0. It's expanded // slightly because cell bounding rectangles are slightly conservative. var r4 = rectFromDegrees(-45.1, -45.1, 0.1, 0.1); testCellOps(r4, S2Cell.FromFacePosLevel(0, (byte)0, 0), 3); testCellOps(r4, S2Cell.FromFacePosLevel(0, (byte)0, 1), 4); testCellOps(r4, S2Cell.FromFacePosLevel(1, (byte)0, 1), 0); // This rectangle intersects the first quadrant of face 0. var r5 = rectFromDegrees(-10, -45, 10, 0); testCellOps(r5, S2Cell.FromFacePosLevel(0, (byte)0, 0), 3); testCellOps(r5, S2Cell.FromFacePosLevel(0, (byte)0, 1), 3); testCellOps(r5, S2Cell.FromFacePosLevel(1, (byte)0, 1), 0); // Rectangle consisting of a single point. testCellOps(rectFromDegrees(4, 4, 4, 4), S2Cell.FromFacePosLevel(0, (byte)0, 0), 3); // Rectangles that intersect the bounding rectangle of a face // but not the face itself. testCellOps(rectFromDegrees(41, -87, 42, -79), S2Cell.FromFacePosLevel(2, (byte)0, 0), 1); testCellOps(rectFromDegrees(-41, 160, -40, -160), S2Cell.FromFacePosLevel(5, (byte)0, 0), 1); { // This is the leaf cell at the top right hand corner of face 0. // It has two angles of 60 degrees and two of 120 degrees. var cell0tr = new S2Cell(new S2Point(1 + 1e-12, 1, 1)); var bound0tr = cell0tr.RectBound; var v0 = new S2LatLng(cell0tr.GetVertexRaw(0)); testCellOps( rectFromDegrees(v0.Lat.Degrees - 1e-8, v0.Lng.Degrees - 1e-8, v0.Lat.Degrees - 2e-10, v0.Lng.Degrees + 1e-10), cell0tr, 1); } // Rectangles that intersect a face but where no vertex of one region // is contained by the other region. The first one passes through // a corner of one of the face cells. testCellOps(rectFromDegrees(-37, -70, -36, -20), S2Cell.FromFacePosLevel(5, (byte)0, 0), 2); { // These two intersect like a diamond and a square. var cell202 = S2Cell.FromFacePosLevel(2, (byte)0, 2); var bound202 = cell202.RectBound; testCellOps( rectFromDegrees(bound202.Lo.Lat.Degrees + 3, bound202.Lo.Lng.Degrees + 3, bound202.Hi.Lat.Degrees - 3, bound202.Hi.Lng.Degrees - 3), cell202, 2); } }
public void S2CapBasicTest() { // Test basic properties of empty and full caps. var empty = S2Cap.Empty; var full = S2Cap.Full; Assert.True(empty.IsValid); Assert.True(empty.IsEmpty); Assert.True(empty.Complement.IsFull); Assert.True(full.IsValid); Assert.True(full.IsFull); Assert.True(full.Complement.IsEmpty); JavaAssert.Equal(full.Height, 2.0); assertDoubleNear(full.Angle.Degrees, 180); // Containment and intersection of empty and full caps. Assert.True(empty.Contains(empty)); Assert.True(full.Contains(empty)); Assert.True(full.Contains(full)); Assert.True(!empty.InteriorIntersects(empty)); Assert.True(full.InteriorIntersects(full)); Assert.True(!full.InteriorIntersects(empty)); // Singleton cap containing the x-axis. var xaxis = S2Cap.FromAxisHeight(new S2Point(1, 0, 0), 0); Assert.True(xaxis.Contains(new S2Point(1, 0, 0))); Assert.True(!xaxis.Contains(new S2Point(1, 1e-20, 0))); JavaAssert.Equal(xaxis.Angle.Radians, 0.0); // Singleton cap containing the y-axis. var yaxis = S2Cap.FromAxisAngle(new S2Point(0, 1, 0), S1Angle.FromRadians(0)); Assert.True(!yaxis.Contains(xaxis.Axis)); JavaAssert.Equal(xaxis.Height, 0.0); // Check that the complement of a singleton cap is the full cap. var xcomp = xaxis.Complement; Assert.True(xcomp.IsValid); Assert.True(xcomp.IsFull); Assert.True(xcomp.Contains(xaxis.Axis)); // Check that the complement of the complement is *not* the original. Assert.True(xcomp.Complement.IsValid); Assert.True(xcomp.Complement.IsEmpty); Assert.True(!xcomp.Complement.Contains(xaxis.Axis)); // Check that very small caps can be represented accurately. // Here "kTinyRad" is small enough that unit vectors perturbed by this // amount along a tangent do not need to be renormalized. var kTinyRad = 1e-10; var tiny = S2Cap.FromAxisAngle(S2Point.Normalize(new S2Point(1, 2, 3)), S1Angle.FromRadians(kTinyRad)); var tangent = S2Point.Normalize(S2Point.CrossProd(tiny.Axis, new S2Point(3, 2, 1))); Assert.True(tiny.Contains(tiny.Axis + (tangent * 0.99 * kTinyRad))); Assert.True(!tiny.Contains(tiny.Axis + (tangent * 1.01 * kTinyRad))); // Basic tests on a hemispherical cap. var hemi = S2Cap.FromAxisHeight(S2Point.Normalize(new S2Point(1, 0, 1)), 1); JavaAssert.Equal(hemi.Complement.Axis, -hemi.Axis); JavaAssert.Equal(hemi.Complement.Height, 1.0); Assert.True(hemi.Contains(new S2Point(1, 0, 0))); Assert.True(!hemi.Complement.Contains(new S2Point(1, 0, 0))); Assert.True(hemi.Contains(S2Point.Normalize(new S2Point(1, 0, -(1 - EPS))))); Assert.True(!hemi.InteriorContains(S2Point.Normalize(new S2Point(1, 0, -(1 + EPS))))); // A concave cap. var concave = S2Cap.FromAxisAngle(getLatLngPoint(80, 10), S1Angle.FromDegrees(150)); Assert.True(concave.Contains(getLatLngPoint(-70 * (1 - EPS), 10))); Assert.True(!concave.Contains(getLatLngPoint(-70 * (1 + EPS), 10))); Assert.True(concave.Contains(getLatLngPoint(-50 * (1 - EPS), -170))); Assert.True(!concave.Contains(getLatLngPoint(-50 * (1 + EPS), -170))); // Cap containment tests. Assert.True(!empty.Contains(xaxis)); Assert.True(!empty.InteriorIntersects(xaxis)); Assert.True(full.Contains(xaxis)); Assert.True(full.InteriorIntersects(xaxis)); Assert.True(!xaxis.Contains(full)); Assert.True(!xaxis.InteriorIntersects(full)); Assert.True(xaxis.Contains(xaxis)); Assert.True(!xaxis.InteriorIntersects(xaxis)); Assert.True(xaxis.Contains(empty)); Assert.True(!xaxis.InteriorIntersects(empty)); Assert.True(hemi.Contains(tiny)); Assert.True(hemi.Contains( S2Cap.FromAxisAngle(new S2Point(1, 0, 0), S1Angle.FromRadians(S2.PiOver4 - EPS)))); Assert.True(!hemi.Contains( S2Cap.FromAxisAngle(new S2Point(1, 0, 0), S1Angle.FromRadians(S2.PiOver4 + EPS)))); Assert.True(concave.Contains(hemi)); Assert.True(concave.InteriorIntersects(hemi.Complement)); Assert.True(!concave.Contains(S2Cap.FromAxisHeight(-concave.Axis, 0.1))); }
private async Task <BootstrapTask> GetBootstrapTask() { ulong target; lock (_bootstrapLock) { target = _bootstrapCellIds.FirstOrDefault(); if (target == default) { return(null); } _bootstrapCellIds.Remove(target); } var cell = new S2Cell(new S2CellId(target)); var latlng = new S2LatLng(cell.Center); double radius; if (latlng.LatDegrees <= 39) { radius = 715; } else if (latlng.LatDegrees >= 69) { radius = 330; } else { radius = (-13 * latlng.LatDegrees) + 1225; } var radians = radius / 6378137; var centerNormalizedPoint = latlng.Normalized.ToPoint(); var circle = S2Cap.FromAxisHeight(centerNormalizedPoint, (radians * radians) / 2); var coverer = new S2RegionCoverer { MinLevel = 15, MaxLevel = 15, MaxCells = 100 }; var nearbyCellIds = coverer.GetCovering(circle).Select(x => x.Id); lock (_bootstrapCellIds) { _bootstrapCellIds.RemoveAll(cell => nearbyCellIds.Contains(cell)); } if (_bootstrapCellIds.Count == 0) { await Bootstrap().ConfigureAwait(false); if (_bootstrapCellIds.Count == 0) { await Update().ConfigureAwait(false); } } return(new BootstrapTask { Action = ActionType.ScanRaid, Area = Name, Latitude = latlng.LatDegrees, Longitude = latlng.LngDegrees, MinimumLevel = MinimumLevel, MaximumLevel = MaximumLevel, }); }