/// <summary> /// Converts a single precision floating point number to a string. /// </summary> /// <param name="result">The location where the result will be placed.</param> /// <param name="value">The value to format.</param> /// <param name="precision">The precision to output when formatting.</param> /// <param name="options">The format mode to use.</param> /// <param name="provider">The provider used to determine how the value will be /// formatted.</param> public static void ToString(StringBuilder result, float value, int precision, RyuFormatOptions options = RyuFormatOptions.RoundtripMode, IFormatProvider provider = null) { var info = RyuUtils.GetFormatInfo(provider); // Step 1: Decode the floating-point number, and unify normalized and subnormal // cases bool ieeeSign = RyuFloat32.Decode(value, out uint ieeeMantissa, out uint ieeeExponent); // Case distinction; exit early for the easy cases bool mZero = ieeeMantissa == 0UL; if (ieeeExponent == RyuFloat32.EXPONENT_MASK) { RyuUtils.GenerateSpecial(result, ieeeSign, !mZero, info); } else if (mZero && ieeeExponent == 0UL) { RyuUtils.GenerateZero(result, ieeeSign, precision, options, info); } else if ((options & RyuFormatOptions.RoundtripMode) != 0) { new RyuFloat32(ieeeSign, ieeeMantissa, ieeeExponent).ToRoundtripString(result, options, info); } }
/// <summary> /// Appends the exponent for exponential and roundtrip notation. /// </summary> internal static void AppendExponent(StringBuilder result, int exponent, RyuFormatOptions options, NumberFormatInfo info) { bool compat = (options & RyuFormatOptions.CompatibleExponent) != 0; #if DEBUG if (exponent < -9999 || exponent > 9999) { throw new ArgumentOutOfRangeException(nameof(exponent), exponent, "4 digit exponent limit"); } #endif result.Append('E'); if (exponent < 0) { result.Append(info.NegativeSign); exponent = -exponent; } else if (compat || (options & RyuFormatOptions.ExponentialMode) != 0) { result.Append(info.PositiveSign); } if (exponent >= 100) { int e100 = exponent / 100; if (e100 >= 10) { result.Append(RyuTables.DIGIT_TABLE[e100]); } else { result.Append(e100.DigitToChar()); } result.Append(RyuTables.DIGIT_TABLE[exponent - 100 * e100]); } else { if (compat) { result.Append(ZERO); } if (exponent >= 10) { result.Append(RyuTables.DIGIT_TABLE[exponent]); } else { if (compat) { result.Append(ZERO); } result.Append(exponent.DigitToChar()); } } }
/// <summary> /// Generates the output for positive (and negative) zero. /// </summary> internal static void GenerateZero(StringBuilder result, bool sign, int precision, RyuFormatOptions options, NumberFormatInfo info) { bool compat = (options & RyuFormatOptions.CompatibleExponent) != 0, hard = precision > 0 && (options & RyuFormatOptions.SoftPrecision) == 0; if ((options & RyuFormatOptions.RoundtripMode) != 0) { // Roundtrip mode just needs +0 or -0 if (sign) { result.Append("-"); } if (compat) { result.Append("0E+000"); } else { result.Append("0E0"); } } else if ((options & RyuFormatOptions.ExponentialMode) != 0) { // Exponential mode result.Append(ZERO); if (hard) { result.Append(info.NumberDecimalSeparator); Append0(result, precision); } if (compat) { result.Append("E+000"); } else { result.Append("E0"); } } else { // Fixed mode result.Append(ZERO); if (hard) { result.Append(info.NumberDecimalSeparator); Append0(result, precision); } } }
/// <summary> /// Convert a 32-bit Ryu floating point number to a roundtrip notation string. /// </summary> public void ToRoundtripString(StringBuilder result, RyuFormatOptions options, NumberFormatInfo info = null) { // Step 5: Print the decimal representation if (info == null) { info = CultureInfo.CurrentCulture.NumberFormat; } if (sign) { result.Append(info.NegativeSign); } #if DEBUG if (info.NumberDecimalSeparator.Length > 1) { throw new ArgumentException("Requires a single character decimal point"); } #endif // Print the decimal digits uint mantissa = this.mantissa; int olength = RyuUtils.DecimalLength9(mantissa), start = result.Length, index = olength + start; result.Length = index + 1; index = RyuUtils.PrintGroups42(result, ref mantissa, index); // Group of 1 if (mantissa >= 10U) { string digits = RyuTables.DIGIT_TABLE[mantissa]; // We can't use memcpy here: the decimal dot goes between these two digits result[index--] = digits[1]; result[start] = digits[0]; } else { result[start] = mantissa.DigitToChar(); } // Print decimal point if needed if (olength > 1) { result[start + 1] = info.NumberDecimalSeparator[0]; index += olength; } result.Length = index; RyuUtils.AppendExponent(result, exponent + olength - 1, options, info); }
/// <summary> /// Convert a 64-bit Ryu floating point number to a roundtrip notation string. /// </summary> public void ToRoundtripString(StringBuilder result, RyuFormatOptions options, NumberFormatInfo info = null) { // Step 5: Print the decimal representation if (info == null) { info = CultureInfo.CurrentCulture.NumberFormat; } if (sign) { result.Append(info.NegativeSign); } #if DEBUG if (info.NumberDecimalSeparator.Length > 1) { throw new ArgumentException("Requires a single character decimal point"); } #endif ulong mantissa = this.mantissa; uint mantissaShort; int olength = RyuUtils.DecimalLength17(mantissa), start = result.Length, index = olength + start; result.Length = index + 1; // Print the decimal digits: group of 8 if ((mantissa >> 32) != 0U) { // We prefer 32-bit operations, even on 64-bit platforms. // We have at most 17 digits, and uint can store 9 digits. // If output doesn't fit into uint, we cut off 8 digits, // so the rest will fit into uint ulong q = mantissa / 100000000UL; mantissaShort = (uint)mantissa - 100000000U * (uint)q; uint o10000 = mantissaShort / 10000U; uint c0 = mantissaShort - 10000U * o10000, d0 = o10000 % 10000U; uint c1 = c0 / 100U, d1 = d0 / 100U; mantissa = q; index = result.WriteDigits(index, c0 - 100U * c1); index = result.WriteDigits(index, c1); index = result.WriteDigits(index, d0 - 100U * d1); index = result.WriteDigits(index, d1); } mantissaShort = (uint)mantissa; index = RyuUtils.PrintGroups42(result, ref mantissaShort, index); // Group of 1 if (mantissaShort >= 10U) { string digits = RyuTables.DIGIT_TABLE[mantissaShort]; // We can't use memcpy here: the decimal dot goes between these two digits result[index--] = digits[1]; result[start] = digits[0]; } else { result[start] = mantissaShort.DigitToChar(); } // Print decimal point if needed if (olength > 1) { result[start + 1] = info.NumberDecimalSeparator[0]; index += olength; } result.Length = index; RyuUtils.AppendExponent(result, exponent + olength - 1, options, info); }
/// <summary> /// Convert a 64-bit floating point number to an exponential notation string. /// </summary> internal static void ToExponentialString(StringBuilder result, ulong ieeeMantissa, uint ieeeExponent, int precision, RyuFormatOptions options, NumberFormatInfo info) { bool printDP = precision > 0, soft = (options & RyuFormatOptions.SoftPrecision) != 0; uint digits = 0U; int printedDigits = 0, availDigits = 0, exp = 0, exponent = Decode(ieeeMantissa, ieeeExponent, out ulong mantissa), start = result.Length; ulong mantShift = mantissa << MANTISSA_SHIFT; ++precision; if (exponent >= -RyuFloat64.DOUBLE_MANTISSA_BITS) { int idx = (exponent < 0) ? 0 : RyuUtils.IndexForExponent(exponent), i = RyuUtils.LengthForIndex(idx) - 1, j = Pow10BitsForIndex(idx) - exponent + MANTISSA_SHIFT, p = RyuTables.POW10_OFFSET_D[idx] + i; for (; i >= 0; i--) { // Temporary: j is usually around 128, and by shifting a bit, we push it // to 128 or above, which is a slightly faster code path in // MulShiftMod1E9. Instead, we can just increase the multipliers digits = RyuUtils.MulShiftMod1E9(mantShift, RyuTables.POW10_SPLIT_D[p, 0], RyuTables.POW10_SPLIT_D[p, 1], RyuTables.POW10_SPLIT_D[p, 2], j); if (printedDigits > 0) { if (printedDigits + 9 > precision) { availDigits = 9; break; } RyuUtils.Append9Digits(result, digits); printedDigits += 9; } else if (digits != 0U) { availDigits = RyuUtils.DecimalLength9(digits); exp = i * 9 + availDigits - 1; if (availDigits > precision) { break; } RyuUtils.AppendDDigits(result, digits, availDigits + 1, printDP, info); printedDigits = availDigits; availDigits = 0; } p--; } } if (exponent < 0 && availDigits == 0) { int idx = (-exponent) >> 4, pMax = RyuTables.POW10_OFFSET_2_D[idx + 1], p = RyuTables.POW10_OFFSET_2_D[idx], j = MANTISSA_SHIFT + POW10_ADDITIONAL_BITS - exponent - (idx << 4); for (int i = RyuTables.MIN_BLOCK_2_D[idx]; i < 200; i++) { digits = (p >= pMax) ? 0U : RyuUtils.MulShiftMod1E9(mantShift, RyuTables.POW10_SPLIT_2_D[p, 0], RyuTables.POW10_SPLIT_2_D[p, 1], RyuTables.POW10_SPLIT_2_D[p, 2], j); if (printedDigits > 0) { if (printedDigits + 9 > precision) { availDigits = 9; break; } RyuUtils.Append9Digits(result, digits); printedDigits += 9; } else if (digits != 0) { availDigits = RyuUtils.DecimalLength9(digits); exp = (i + 1) * -9 + availDigits - 1; if (availDigits > precision) { break; } RyuUtils.AppendDDigits(result, digits, availDigits + 1, printDP, info); printedDigits = availDigits; availDigits = 0; } p++; } } // 0 = don't round up; 1 = round up unconditionally; 2 = round up if odd int maxDigits = precision - printedDigits, roundFlag; uint lastDigit = 0U; if (availDigits == 0) { digits = 0U; } if (availDigits > maxDigits) { lastDigit = RyuUtils.LastDigit(ref digits, availDigits - maxDigits); } if (lastDigit != 5U) { roundFlag = (lastDigit > 5U) ? 1 : 0; } else { // Is m * 2^e2 * 10^(precision + 1 - exp) integer? // precision was already increased by 1, so we don't need to write + 1 here. int rexp = precision - exp; bool trailingZeroes = HasTrailingZeroes(exponent, rexp, mantissa); if (rexp < 0 && trailingZeroes) { trailingZeroes = RyuUtils.IsMultipleOf5Power(mantissa, -rexp); } roundFlag = trailingZeroes ? 2 : 1; } if (printedDigits > 0) { if (digits == 0U) { if (!soft) { RyuUtils.Append0(result, maxDigits); } } else { RyuUtils.AppendCDigits(result, digits, maxDigits); } } else { RyuUtils.AppendDDigits(result, digits, maxDigits + 1, printDP, info); } if (roundFlag != 0 && RyuUtils.RoundResult(result, start, roundFlag, out _, info)) { exp++; } if (soft) { RyuUtils.SoftenResult(result, info); } RyuUtils.AppendExponent(result, exp, options, info); }
/// <summary> /// Convert a 64-bit floating point number to a fixed notation string. /// </summary> internal static void ToFixedString(StringBuilder result, ulong ieeeMantissa, uint ieeeExponent, int precision, RyuFormatOptions options, NumberFormatInfo info) { bool zero = true, soft = (options & RyuFormatOptions.SoftPrecision) != 0; int exponent = Decode(ieeeMantissa, ieeeExponent, out ulong mantissa), start = result.Length; ulong mShift = mantissa << MANTISSA_SHIFT; uint digits; if (exponent >= -RyuFloat64.DOUBLE_MANTISSA_BITS) { int idx = (exponent < 0) ? 0 : RyuUtils.IndexForExponent(exponent), p10bits = Pow10BitsForIndex(idx), i = RyuUtils.LengthForIndex(idx) - 1, p = RyuTables.POW10_OFFSET_D[idx] + i, j = p10bits - exponent + MANTISSA_SHIFT; for (; i >= 0; i--) { digits = RyuUtils.MulShiftMod1E9(mShift, RyuTables.POW10_SPLIT_D[p, 0], RyuTables.POW10_SPLIT_D[p, 1], RyuTables.POW10_SPLIT_D[p, 2], j); if (!zero) { RyuUtils.Append9Digits(result, digits); } else if (digits != 0U) { RyuUtils.AppendNDigits(result, RyuUtils.DecimalLength9(digits), digits); zero = false; } p--; } } if (zero) { result.Append(RyuUtils.ZERO); } if ((options & RyuFormatOptions.ThousandsSeparators) != 0) { RyuUtils.AddThousands(result, start, info); } if (precision > 0 && (!soft || exponent < 0)) { result.Append(info.NumberDecimalSeparator); } if (exponent < 0) { // 0 = don't round up; 1 = round up unconditionally; 2 = round up if odd int idx = (-exponent) >> 4, roundFlag = 0, i = 0, blocks = precision / 9 + 1, minBlock = RyuTables.MIN_BLOCK_2_D[idx]; if (blocks <= minBlock) { RyuUtils.Append0(result, precision); i = blocks; } else if (i < minBlock) { RyuUtils.Append0(result, 9 * minBlock); i = minBlock; } int p = RyuTables.POW10_OFFSET_2_D[idx] + i - minBlock, pMax = RyuTables. POW10_OFFSET_2_D[idx + 1], j = MANTISSA_SHIFT + POW10_ADDITIONAL_BITS - exponent - (idx << 4); for (; i < blocks; ++i) { if (p >= pMax) { // If the remaining digits are all 0, then no rounding required if (!soft) { RyuUtils.Append0(result, precision - 9 * i); } break; } digits = RyuUtils.MulShiftMod1E9(mShift, RyuTables.POW10_SPLIT_2_D[p, 0], RyuTables.POW10_SPLIT_2_D[p, 1], RyuTables.POW10_SPLIT_2_D[p, 2], j); if (i < blocks - 1) { RyuUtils.Append9Digits(result, digits); } else { int maximum = precision - 9 * i; uint lastDigit = RyuUtils.LastDigit(ref digits, 9 - maximum); // Is m * 10^(additionalDigits + 1) / 2^(-e2) integer? if (lastDigit > 5U) { roundFlag = 1; } else if (lastDigit < 5U) { roundFlag = 0; } else if (HasTrailingZeroes(exponent, precision + 1, mantissa)) { roundFlag = 2; } else { roundFlag = 1; } if (maximum > 0) { RyuUtils.AppendCDigits(result, digits, maximum); } break; } p++; } if (roundFlag != 0 && RyuUtils.RoundResult(result, start, roundFlag, out int decimalIndex, info)) { if (decimalIndex > 0) { result[decimalIndex++] = RyuUtils.ZERO; result[decimalIndex] = info.NumberDecimalSeparator[0]; } result.Append(RyuUtils.ZERO); } if (soft && precision > 0) { RyuUtils.SoftenResult(result, info); } } else if (!soft) { RyuUtils.Append0(result, precision); } }